Back to Search Start Over

Binomial edge ideals and bounds for their regularity

Authors :
Arvind Kumar
Source :
Journal of Algebraic Combinatorics. 53:729-742
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Let $G$ be a simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in $S = K[x_1, \ldots, x_n, y_1,\ldots, y_n].$ We prove that the Castelnuovo-Mumford regularity of $J_G$ is bounded above by $c(G)+1$ when $G$ is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani-Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi-Matsuda conjecture to be true.<br />Comment: 14 pages

Details

ISSN :
15729192 and 09259899
Volume :
53
Database :
OpenAIRE
Journal :
Journal of Algebraic Combinatorics
Accession number :
edsair.doi.dedup.....b205c1eb5bbe2611d6b08cd1a45b0750