Back to Search
Start Over
Binomial edge ideals and bounds for their regularity
- Source :
- Journal of Algebraic Combinatorics. 53:729-742
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Let $G$ be a simple graph on $n$ vertices and $J_G$ denote the corresponding binomial edge ideal in $S = K[x_1, \ldots, x_n, y_1,\ldots, y_n].$ We prove that the Castelnuovo-Mumford regularity of $J_G$ is bounded above by $c(G)+1$ when $G$ is a quasi-block graph or semi-block graph. We give another proof of Saeedi Madani-Kiani regularity upper bound conjecture for chordal graphs. We obtain the regularity of binomial edge ideals of Jahangir graphs. Later, we establish a sufficient condition for Hibi-Matsuda conjecture to be true.<br />Comment: 14 pages
- Subjects :
- Algebra and Number Theory
Conjecture
Simple graph
Mathematics::Commutative Algebra
010102 general mathematics
0102 computer and information sciences
Mathematics - Commutative Algebra
Commutative Algebra (math.AC)
01 natural sciences
Upper and lower bounds
Graph
Combinatorics
13D02, 05E40
010201 computation theory & mathematics
Chordal graph
FOS: Mathematics
Mathematics - Combinatorics
Discrete Mathematics and Combinatorics
Combinatorics (math.CO)
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 15729192 and 09259899
- Volume :
- 53
- Database :
- OpenAIRE
- Journal :
- Journal of Algebraic Combinatorics
- Accession number :
- edsair.doi.dedup.....b205c1eb5bbe2611d6b08cd1a45b0750