Back to Search
Start Over
Targeting cellular metabolism using rapamycin and/or doxycycline enhances anti-tumour effects in human glioma cells
- Source :
- Cancer Cell International, Vol 18, Iss 1, Pp 1-17 (2018), Cancer Cell International
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Background Glioma is the most common highly aggressive, primary adult brain tumour. Clinical data show that therapeutic approaches cannot reach the expectations in patients, thus gliomas are mainly incurable diseases. Tumour cells can adapt rapidly to alterations during therapeutic treatments related to their metabolic rewiring and profound heterogeneity in tissue environment. Renewed interests aim to develop effective treatments targeting angiogenesis, kinase activity and/or cellular metabolism. mTOR (mammalian target of rapamycin), whose hyper-activation is characteristic for many tumours, promotes metabolic alterations, macromolecule biosynthesis, cellular growth and survival. Unfortunately, mTOR inhibitors with their lower toxicity have not resulted in appreciable survival benefit. Analysing mTOR inhibitor sensitivity, other metabolism targeting treatments and their combinations could help to find potential agents and biomarkers for therapeutic development in glioma patients. Methods In vitro proliferation assays, protein expression and metabolite concentration analyses were used to study the effects of mTOR inhibitors, other metabolic treatments and their combinations in glioma cell lines. Furthermore, mTOR activity and cellular metabolism related protein expression patterns were also investigated by immunohistochemistry in human biopsies. Temozolomide and/or rapamycin treatments altered the expressions of enzymes related to lipid synthesis, glycolysis and mitochondrial functions as consequences of metabolic adaptation; therefore, other anti-metabolic drugs (chloroquine, etomoxir, doxycycline) were combined in vitro. Results Our results suggest that co-targeting metabolic pathways had tumour cell dependent additive/synergistic effects related to mTOR and metabolic protein expression patterns cell line dependently. Drug combinations, especially rapamycin + doxycycline may have promising anti-tumour effect in gliomas. Additionally, our immunohistochemistry results suggest that metabolic and mTOR activity alterations are not related to the recent glioma classification, and these protein expression profiles show individual differences in patients’ materials. Conclusions Based on these, combinations of different new/old drugs targeting cellular metabolism could be promising to inhibit high adaptation capacity of tumour cells depending on their metabolic shifts. Relating to this, such a development of current therapy needs to find special biomarkers to characterise metabolic heterogeneity of gliomas.
- Subjects :
- 0301 basic medicine
Cancer Research
mTOR inhibitor
Angiogenesis
Cell
Biology
lcsh:RC254-282
03 medical and health sciences
0302 clinical medicine
Tumour metabolism
Glioma
Temozolomide
Genetics
medicine
Rapamycin
lcsh:QH573-671
Kinase activity
PI3K/AKT/mTOR pathway
lcsh:Cytology
Cell growth
Lipid metabolism
lcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
medicine.disease
Metabolic pathway
030104 developmental biology
medicine.anatomical_structure
Oncology
Doxycycline
030220 oncology & carcinogenesis
Cancer research
Primary Research
Glioblastoma
Anti-metabolic drug combinations
Subjects
Details
- ISSN :
- 14752867
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- Cancer Cell International
- Accession number :
- edsair.doi.dedup.....b1afd11db151cba71848c7ceb8593c9c
- Full Text :
- https://doi.org/10.1186/s12935-018-0710-0