Back to Search Start Over

Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure

Authors :
James E. Bruce
Juan D. Chavez
Rong Tian
Andrew Keller
Xiaoting Tang
Outi Villet
Matthew A. Walker
Source :
JCI Insight, Vol 6, Iss 3 (2021), JCI Insight
Publication Year :
2021
Publisher :
American Society for Clinical investigation, 2021.

Abstract

A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.

Details

Language :
English
ISSN :
23793708
Volume :
6
Issue :
3
Database :
OpenAIRE
Journal :
JCI Insight
Accession number :
edsair.doi.dedup.....b171a87b5db35bf34d9b48982782f53a