Back to Search Start Over

CpeS Is a Lyase Specific for Attachment of 3Z-PEB to Cys82 of β-phycoerythrin from Prochlorococcus marinus MED4

Authors :
Nicole Frankenberg-Dinkel
Klaus Kock
Jessica Wiethaus
Christian Herrmann
Lars I. Leichert
Andrea W.U. Busch
Source :
Journal of Biological Chemistry. 285:37561-37569
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses β-phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z- and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV). However, dimerization of CpeS is independent of bilins, which are tightly bound in a complex at a ratio of 1:1. Although bilin binding by CpeS is fast, transfer to CpeB is rather slow. CpeS is able to attach 3E-PEB and 3Z-PEB to dimeric CpeB but not DHBV. CpeS transfer of 3Z-PEB exclusively yields correctly bound βCys(82)-PEB, whereas βCys(82)-DHBV is a side product of 3E-PEB transfer. Spontaneous 3E- and 3Z-PEB addition to CpeB is faulty, and products are in both cases βCys(82)-DHBV and likely a PEB bound at βCys(82) in a non-native configuration. Our data indicate that CpeS is specific for 3Z-PEB transfer to βCys(82) of phycoerythrin and essential for the correct configuration of the attachment product.

Details

ISSN :
00219258
Volume :
285
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....b155c459b85fe853cb8cc3de2a6f9bb7