Back to Search Start Over

Nitrogen nutrition index predicted by a crop model improves the genomic prediction of grain number for a bread wheat core collection

Authors :
Pierre Martre
Sylvie Huet
Karine Chenu
Arnaud Gauffreteau
David Gouache
Delphine Ly
Jacques Bordes
Renaud Rincent
Gilles Charmet
Génétique Diversité et Ecophysiologie des Céréales (GDEC)
Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
Queensland Alliance for Agriculture and Food Innovation (QAAFI)
University of Queensland [Brisbane]
Agronomie
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Mathématiques et Informatique Appliquées du Génome à l'Environnement [Jouy-En-Josas] (MaIAGE)
Institut National de la Recherche Agronomique (INRA)
Terres Inovia
Écophysiologie des Plantes sous Stress environnementaux (LEPSE)
Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Enterprise Competitiveness Fund Project 'Semences de Demain'
INRA metaprogram SELGEN
Auvergne Region
Institut National de la Recherche Agronomique (INRA)-Université Blaise Pascal - Clermont-Ferrand 2 (UBP)
QAAFI
AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de la Recherche Agronomique (INRA)
Source :
Field Crops Research, Field Crops Research, 2017, 214, pp.331-340. ⟨10.1016/j.fcr.2017.09.024⟩, Field Crops Research, Elsevier, 2017, 214, pp.331-340. ⟨10.1016/j.fcr.2017.09.024⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

In plant breeding, one of the major challenges of genomic selection is to account for genotype-by-environment (G × E) interactions, and more specifically how varieties are adapted to various environments. Crop growth models (CGM) were developed to model the response of plants to environmental conditions. They can be used to characterize eco-physiological stresses in relation to crop growth and developmental stages, and thereby help to dissect G × E interactions. Our study aims at demonstrating how environment characterization using crop models can be integrated to improve both the understanding and the genomic predictions of G × E interactions. We evaluated the usefulness of using CGM to characterize environments by comparing basic and CGM-based stress indicators, to assess how much of the G × E interaction can be explained and whether gains in prediction accuracy can be made. We carried out a case study in wheat (Triticum aestivum) to model nitrogen stress in a CGM in 12 environments defined by year × location × nitrogen treatment. Interactions between 194 varieties of a core collection and these 12 different nitrogen conditions were examined by analyzing grain number. We showed that (i) CGM based indicators captured the G × E interactions better than basic indicators and that (ii) genomic predictions were slightly improved by modeling the genomic interaction with the crop model based characterization of nitrogen stress. A framework was proposed to integrate crop model environment characterization into genomic predictions. We describe how this characterization promises to improve the prediction accuracy of adaptation to environmental stresses.

Details

Language :
English
ISSN :
03784290
Database :
OpenAIRE
Journal :
Field Crops Research, Field Crops Research, 2017, 214, pp.331-340. ⟨10.1016/j.fcr.2017.09.024⟩, Field Crops Research, Elsevier, 2017, 214, pp.331-340. ⟨10.1016/j.fcr.2017.09.024⟩
Accession number :
edsair.doi.dedup.....b14db638d71cfd5d1610ee8cc234277d
Full Text :
https://doi.org/10.1016/j.fcr.2017.09.024⟩