Back to Search
Start Over
Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome
- Source :
- BMC Genomics
- Publication Year :
- 2013
-
Abstract
- Background When faced with climate change, species must either shift their home range or adapt in situ in order to maintain optimal physiological balance with their environment. The American pika (Ochotona princeps) is a small alpine mammal with limited dispersal capacity and low tolerance for thermal stress. As a result, pikas have become an important system for examining biotic responses to changing climatic conditions. Previous research using amplified fragment length polymorphisms (AFLPs) has revealed evidence for environmental-mediated selection in O. princeps populations distributed along elevation gradients, yet the anonymity of AFLP loci and lack of available genomic resources precluded the identification of associated gene regions. Here, we harnessed next-generation sequencing technology in order to characterize the American pika transcriptome and identify a large suite of single nucleotide polymorphisms (SNPs), which can be used to elucidate elevation- and site-specific patterns of sequence variation. Results We constructed pooled cDNA libraries of O. princeps from high (1400m) and low (300m) elevation sites along a previously established transect in British Columbia. Transcriptome sequencing using the Roche 454 GS FLX titanium platform generated 780 million base pairs of data, which were assembled into 7,325 high coverage contigs. These contigs were used to identify 24,261 novel SNP loci. Using high resolution melt analysis, we developed 17 of these SNPs into genotyping assays, which were validated with independent DNA samples from British Columbia Canada and Oregon State USA. In addition, we detected haplotypes in the NADH dehydrogenase subunit 5 of the mitochondrial genome that were fixed and different among elevations, suggesting that this may be an informative target gene for studying the role of cellular respiration in local adaptation. We also identified contigs that were unique to each elevation, including a high elevation-specific contig that was a positive match with the hemoglobin alpha chain from the plateau pika, a species restricted to high elevation steppes in Asia. Elevation-specific contigs may represent candidate regions subject to differential levels of gene expression along this elevation gradient. Conclusions To our knowledge, this is the first broad-scale, transcriptome-level study conducted within the Ochotonidae, providing novel genomic resources for studying pika ecology, behaviour and population history.
- Subjects :
- 0106 biological sciences
Climate Change
Molecular Sequence Data
Population
Genomics
Environment
DNA, Mitochondrial
Polymorphism, Single Nucleotide
010603 evolutionary biology
01 natural sciences
DNA sequencing
Population genomics
Contig Mapping
03 medical and health sciences
Genetics
Animals
Amino Acid Sequence
Adaptation
Pika
education
Gene Library
030304 developmental biology
0303 health sciences
education.field_of_study
American pika
biology
Contig
Gene Expression Profiling
High-Throughput Nucleotide Sequencing
Reproducibility of Results
NADH Dehydrogenase
Lagomorpha
Ochotona princeps
Single nucleotide polymorphisms
15. Life on land
biology.organism_classification
Haplotypes
13. Climate action
Elevation gradient
Next-generation sequencing
Amplified fragment length polymorphism
Research Article
Biotechnology
Subjects
Details
- Volume :
- 14
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC Genomics
- Accession number :
- edsair.doi.dedup.....b14be875b2ee951f439565324493b2a7