Back to Search Start Over

Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen

Authors :
Xinyuan Zhao
David Vanderbilt
Ivo Souza
Nicola Marzari
Richard M. Martin

Abstract

We have constructed maximally-localized Wannier functions for prototype structures of solid molecular hydrogen under pressure, starting from LDA and tight-binding Bloch wave functions. Each occupied Wannier function can be associated with two paired protons, defining a ``Wannier molecule''. The sum of the dipole moments of these ``molecules'' always gives the correct macroscopic polarization, even under strong compression, when the overlap between nearby Wannier functions becomes significant. We find that at megabar pressures the contributions to the dipoles arising from the overlapping tails of the Wannier functions is very large. The strong vibron infrared absorption experimentally observed in phase III, above ~ 150 GPa, is analyzed in terms of the vibron-induced fluctuations of the Wannier dipoles. We decompose these fluctuations into ``static'' and ``dynamical'' contributions, and find that at such high densities the latter term, which increases much more steeply with pressure, is dominant.<br />Comment: 17 pages, two-column style with 14 postscript figures embedded. Uses REVTEX and epsf macros

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b10623c8746ccdf773529f0e83995915