Back to Search Start Over

Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data

Authors :
Gamze Gürsoy
Jie Liang
Yun Xu
Amy L. Kenter
Source :
Nucleic Acids Research
Publication Year :
2017
Publisher :
Oxford University Press (OUP), 2017.

Abstract

Conformation capture technologies measure frequencies of interactions between chromatin regions. However, understanding gene-regulation require knowledge of detailed spatial structures of heterogeneous chromatin in cells. Here we describe the nC-SAC (n-Constrained-Self Avoiding Chromatin) method that transforms experimental interaction frequencies into 3D ensembles of chromatin chains. nC-SAC first distinguishes specific from non-specific interaction frequencies, then generates 3D chromatin ensembles using identified specific interactions as spatial constraints. Application to α-globin locus shows that these constraints (∼20%) drive the formation of ∼99% all experimentally captured interactions, in which ∼30% additional to the imposed constraints is found to be specific. Many novel specific spatial contacts not captured by experiments are also predicted. A subset, of which independent ChIA-PET data are available, is validated to be RNAPII-, CTCF-, and RAD21-mediated. Their positioning in the architectural context of imposed specific interactions from nC-SAC is highly important. Our results also suggest the presence of a many-body structural unit involving α-globin gene, its enhancers, and POL3RK gene for regulating the expression of α-globin in silent cells.

Details

ISSN :
13624962 and 03051048
Volume :
45
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....b0f66209bfce9d56ac748d6e21f7e6c7