Back to Search Start Over

Adaptive target detection in hyperspectral imaging from two sets of training samples with different means

Authors :
François Vincent
Olivier Besson
Stefania Matteoli
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Institute of Electronics, Computer and Telecommunication Engineering [Milano] (IEIIT-CNR )
Consiglio Nazionale delle Ricerche [Torino] (CNR)
Consiglio Nazionale delle Ricerche - CNR (ITALY)
Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE)
Département d'Electronique, Optronique et Signal - DEOS (Toulouse, France)
Source :
Signal Processing, Signal Processing, Elsevier, 2021, 181, pp.107909-. ⟨10.1016/j.sigpro.2020.107909⟩, Signal processing, 181 (2021). doi:10.1016/j.sigpro.2020.107909, info:cnr-pdr/source/autori:Besson O.; Vincent F.; Matteoli S./titolo:Adaptive target detection in hyperspectral imaging from two sets of training samples with different means/doi:10.1016%2Fj.sigpro.2020.107909/rivista:Signal processing (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:181
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

In this paper, we consider local detection of a target in hyperspectral imaging and we assume that the spectral signature of interest is buried in a background which follows an elliptically contoured distribution with unknown parameters. In order to infer the background parameters, two sets of training samples are available: one set, taken from pixels close to the pixel under test, shares the same mean and covariance while a second set of farther pixels shares the same covariance but has a different mean. When the whole data samples (pixel under test and training samples) follow a matrix-variate t distribution, the one-step generalized likelihood ratio test (GLRT) is derived in closed-form. It is shown that this GLRT coincides with that obtained under a Gaussian assumption and that it guarantees a constant false alarm rate. We also present a two-step GLRT where the mean and covariance of the background are estimated from the training samples only and then plugged in the GLRT based on the pixel under test only.

Details

Language :
English
ISSN :
01651684 and 18727557
Database :
OpenAIRE
Journal :
Signal Processing, Signal Processing, Elsevier, 2021, 181, pp.107909-. ⟨10.1016/j.sigpro.2020.107909⟩, Signal processing, 181 (2021). doi:10.1016/j.sigpro.2020.107909, info:cnr-pdr/source/autori:Besson O.; Vincent F.; Matteoli S./titolo:Adaptive target detection in hyperspectral imaging from two sets of training samples with different means/doi:10.1016%2Fj.sigpro.2020.107909/rivista:Signal processing (Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:181
Accession number :
edsair.doi.dedup.....b0d1bf805c3ed6198e5c681f20a47b6f
Full Text :
https://doi.org/10.1016/j.sigpro.2020.107909⟩