Back to Search
Start Over
Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients
- Source :
- Analytical chemistry, 82(20), 8502-8509. American Chemical Society, Analytical chemistry, 82, 8502-8509. American Chemical Society
- Publication Year :
- 2010
-
Abstract
- Electrochemical mapping of neurotransmitter concentrations on a chip promises to be an interesting technique for investigating synaptic release in cellular networks. In here, we present a novel chip-based device for the detection of neurotransmitter fluctuations in real-time. The chip features an array of plane-parallel nanocavity sensors, which strongly amplify the electrochemical signal. This amplification is based on efficient redox cycling via confined diffusion between two electrodes inside the nanocavity sensors. We demonstrate the capability of resolving concentration fluctuations of redox-active species in a microfluidic mixing gradient on the chip. The results are explained by a simulated concentration profile that was calculated on the basis of the coupled Navier−Stokes and convection-diffusion equations using a finite element approach.
- Subjects :
- Diffusion equation
business.industry
Chemistry
Diffusion
Dopamine
Microfluidics
Analytical chemistry
Electrochemistry
Chip
Microarray Analysis
Signal
Analytical Chemistry
Nanostructures
Quantitative Biology::Subcellular Processes
IR-73995
Electrode
METIS-270215
Optoelectronics
System on a chip
business
Oxidation-Reduction
Subjects
Details
- ISSN :
- 15206882 and 00032700
- Volume :
- 82
- Issue :
- 20
- Database :
- OpenAIRE
- Journal :
- Analytical chemistry
- Accession number :
- edsair.doi.dedup.....b079416806c8d38f2111e5125bb1c52c