Back to Search Start Over

Commissioning and operation of the readout system for the SoLid neutrino detector

Authors :
Dave M Newbold
Muriel Fallot
G. Lehaut
S. Ihantola
H. Chanal
I. Piñera
D. Boumediene
N. Van Remortel
Konstantinos Petridis
M. Settimo
S. Manley
M. Labare
P. Van Mulders
Antonin Vacheret
S. Van Dyck
D. Henaff
D. Boursette
David Cussans
Yasmine Amhis
B. Viaud
M. Bongrand
B. Guillon
M. H. Schune
S. Jenzer
L. Popescu
S. Monteil
L. Simard
S. Binet
Johan Borg
W. Beaumont
Lydie Giot
Dominique Durand
D. Ryckbosch
L. N. Kalousis
C. Moortgat
B. C. Castle
N. C. Ryder
Daniel Martin Saunders
I. Michiels
A. De Roeck
J. Park
P. Crochet
L. Manzanillas
S. Vercaemer
G. Vandierendonck
F. Yermia
S. Kalcheva
J. Mermans
A. C. Weber
L. Ghys
Y. Abreu
K. Graves
B. Hosseini
M. Verstraeten
K. Clark
B. Coupé
V. Pestel
Physics
Faculty of Sciences and Bioengineering Sciences
Laboratoire de l'Accélérateur Linéaire (LAL)
Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Physique de Clermont (LPC)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de physique corpusculaire de Caen (LPCC)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de physique subatomique et des technologies associées (SUBATECH)
Université de Nantes - Faculté des Sciences et des Techniques
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
SoLid
Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
SoLid Collaboration
Commission of the European Communities
Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
ANR-16-CE31-0018,SoLid,Recherche d'oscillations à très courte distance avec un détecteur au Lithium6 auprès du SCK-CEN BR2(2016)
Source :
JINST, JINST, 2019, 14 (11), pp.P11003. ⟨10.1088/1748-0221/14/11/P11003⟩, Journal of Instrumentation, Journal of Instrumentation, IOP Publishing, 2019, 14 (11), pp.P11003. ⟨10.1088/1748-0221/14/11/P11003⟩, Journal of instrumentation, JOURNAL OF INSTRUMENTATION
Publication Year :
2019

Abstract

The SoLid experiment aims to measure neutrino oscillation at a baseline of 6.4 m from the BR2 nuclear reactor in Belgium. Anti-neutrinos interact via inverse beta decay (IBD), resulting in a positron and neutron signal that are correlated in time and space. The detector operates in a surface building, with modest shielding, and relies on extremely efficient online rejection of backgrounds in order to identify these interactions. A novel detector design has been developed using 12800 5 cm cubes for high segmentation. Each cube is formed of a sandwich of two scintillators, PVT and 6LiF:ZnS(Ag), allowing the detection and identification of positrons and neutrons respectively. The active volume of the detector is an array of cubes measuring 80× 80× 250 cm (corresponding to a fiducial mass of 1.6 T), which is read out in layers using two dimensional arrays of wavelength shifting fibres and silicon photomultipliers, for a total of 3200 readout channels. Signals are recorded with 14 bit resolution, and at 40 MHz sampling frequency, for a total raw data rate of over 2 Tbit/s. In this paper, we describe a novel readout and trigger system built for the experiment, that satisfies requirements on: compactness, low power, high performance, and very low cost per channel. The system uses a combination of high price-performance FPGAs with a gigabit Ethernet based readout system, and its total power consumption is under 1 kW. The use of zero suppression techniques, combined with pulse shape discrimination trigger algorithms to detect neutrons, results in an online data reduction factor of around 10000. The neutron trigger is combined with a large per-channel history time buffer, allowing for unbiased positron detection. The system was commissioned in late 2017, with successful physics data taking established in early 2018. The SoLid experiment aims to measure neutrino oscillation at a baseline of 6.4 m from the BR2 nuclear reactor in Belgium. Anti-neutrinos interact via inverse beta decay (IBD), resulting in a positron and neutron signal that are correlated in time and space. The detector operates in a surface building, with modest shielding, and relies on extremely efficient online rejection of backgrounds in order to identify these interactions. A novel detector design has been developed using 12800 5 cm cubes for high segmentation. Each cube is formed of a sandwich of two scintillators, PVT and 6LiF:ZnS(Ag), allowing the detection and identification of positrons and neutrons respectively. The active volume of the detector is an array of cubes measuring 80x80x250 cm (corresponding to a fiducial mass of 1.6 T), which is read out in layers using two dimensional arrays of wavelength shifting fibres and silicon photomultipliers, for a total of 3200 readout channels. Signals are recorded with 14 bit resolution, and at 40 MHz sampling frequency, for a total raw data rate of over 2 Tbit/s. In this paper, we describe a novel readout and trigger system built for the experiment, that satisfies requirements on: compactness, low power, high performance, and very low cost per channel. The system uses a combination of high price-performance FPGAs with a gigabit Ethernet based readout system, and its total power consumption is under 1 kW. The use of zero suppression techniques, combined with pulse shape discrimination trigger algorithms to detect neutrons, results in an online data reduction factor of around 10000. The neutron trigger is combined with a large per-channel history time buffer, allowing for unbiased positron detection. The system was commissioned in late 2017, with successful physics data taking established in early 2018.

Details

ISSN :
17480221
Volume :
14
Issue :
2019
Database :
OpenAIRE
Journal :
Journal of Instrumentation
Accession number :
edsair.doi.dedup.....b066de74460d08d4b5b661113d62f34d