Back to Search
Start Over
Effect of ultrasonic frequency on degradation of methylene blue in the presence of particle
- Source :
- AIP Conference Proceedings. 1433:577-580
- Publication Year :
- 2012
-
Abstract
- Techniques for the degradation of hazardous organic compounds have been investigated such as solvent extraction, incineration, chemical dehalogenation and biodegradation, etc. Ultrasound has been found to be an attractive advanced technology for the degradation of hazardous organic compounds in water. In addition, the sonochemical reaction is enhanced by particle addition. However, the enhancement mechanism of particle addition has not been investigated well, because ultrasound enhances not only chemical reaction but also mass transfer. In this study, the degradation process of methylene blue as the model hazardous organic compound by ultrasonic irradiation was investigated. The effects of ultrasonic irradiation condition on degradation rate were investigated. The effect of ultrasonic frequency on improvement of degradation reaction by particle addition was also investigated. In addition, the effects of ultrasonic frequency on ultrasonic power and chemical efficiency were investigated by calorimetry and SE value. The degradation rate constants were estimated from the results of temporal change of the concentration of methylene blue assuming first order kinetics for the decomposition. There was a linear relation in the degradation rate and the ultrasonic power. In addition, the degradation rates at 127 kHz and 490 kHz were much larger than that at 22.8 kHz. The effect of ultrasonic frequency on sonochemical efficiency has been investigated, and the sonochemical effects in the range of frequency of 200 - 500 kHz are 10 times larger than those in the lower or higher frequency regions. Therefore, the degradation rate of methylene blue was considered to estimate using sonochemical efficiency. The degradation process of methylene blue was intensified by particle addition, and the degradation rate increased with increasing amount of particle. On the other hand, the enhancement of degradation rate by particle addition was influenced by both ultrasonic frequency and species of particle. The relationship between particle size and resonance diameter of ultrasound is considered to influence the enhancement of ultrasonic degradation process.
Details
- Language :
- English
- Volume :
- 1433
- Database :
- OpenAIRE
- Journal :
- AIP Conference Proceedings
- Accession number :
- edsair.doi.dedup.....b048a0141c1a6df4db7e9ad8de362eef