Back to Search
Start Over
Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus
- Source :
- Neurosci Lett
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Walking with different types of cueing/stimulus (i.e. auditory, visual) has shown to alter gait variability, thus emerging as an innovative therapeutical tool to restore abnormal gait variability in clinical populations. However, the majority of the research in this area has focused on auditory stimulus, while visual stimulus is an understudied alternative that needs more attention, particularly due to the natural dependence on vision during walking. Furthermore, the time differences between the occurrences of the walking steps and the sensory cues, also known as asynchronies, have also received minimal attention even though how well will synchronize with different stimuli is of great importance. This study investigated how synchronizing to visual stimulus that is presented with different temporal structures could affect gait variability and their respected asynchronies. Participants performed four 15-minute walking trials around an indoor track while wearing insole footswitches for the following conditions: a) self-paced walking, and b) walking with glasses that instructed the subjects to step in sync with a virtual moving bar. The stepping occurences of the moving bar were presented in three different ways b1) non-variable, b2) variable and b3) random. Stride times and asynchronies were determined, and the mean values along with the fractal scaling (an indicator of the complexity) in their time series, were calculated. The fractal scaling of the stride times was unaltered when participants walked with the variable stimulus as compared to the self-paced walking condition; while significantly decreased during the non-variable and random conditions indicating a loss of complexity for these two conditions. Regarding the asynchronies, no differences were observed in the means or the fractal scaling of the asynchronies. The correlation analysis between stride times and asynchronies revealed a strong relationship for the non-variable condition but a weak one for both variable and random conditions. Taken together, the present study results supports the idea of an existing internal timekeeper that exhibits complexity. We have shown that this complex pattern is similar regardless of the stimulus condition, suggesting that the system’s complexity is likely to be expressed at the task performance level – asyncrhonies – when walking to a stimulus. Thus, future research in sensoriomotor gait synchronization should focus and further explore the role of the asynchronies as it may be of clinical significance.
- Subjects :
- Adult
Male
0301 basic medicine
medicine.medical_specialty
Time Factors
Visual perception
Computer science
STRIDE
Walking
Metronome
Stimulus (physiology)
Audiology
Article
Synchronization
law.invention
Young Adult
03 medical and health sciences
0302 clinical medicine
Fractal
Feedback, Sensory
law
medicine
Humans
Gait
Sensory cue
General Neuroscience
Fractals
030104 developmental biology
Correlation analysis
Visual Perception
Female
Cues
human activities
Photic Stimulation
Psychomotor Performance
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 03043940
- Volume :
- 704
- Database :
- OpenAIRE
- Journal :
- Neuroscience Letters
- Accession number :
- edsair.doi.dedup.....b00845c23e49ab673134ab828c29f395
- Full Text :
- https://doi.org/10.1016/j.neulet.2019.03.040