Back to Search Start Over

On the treewidth and related parameters of random geometric graphs

Authors :
Dieter Mitsche
Guillem Perarnau
Universitat Politècnica de Catalunya [Barcelona] (UPC)
Christoph Dürr, Thomas Wilke
Laboratoire Jean Alexandre Dieudonné (JAD)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Applied Mathematics IV Department
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
Dürr, Christoph
Source :
Symposium on Theoretical Aspects of Computer Science, STACS'12 (29th Symposium on Theoretical Aspects of Computer Science), STACS'12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012, Paris, France. pp.408-419, Symposium on Theoretical Aspects of Computer Science, Feb 2012, Paris, France, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), SIAM Journal on Discrete Mathematics, SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2017, Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

We give asymptotically exact values for the treewidth ${tw}(G)$ of a random geometric graph $G\in{\mathcal G(n,r)}$ in $[0,\sqrt{n}]^2$. More precisely, let $r_c$ denote the threshold radius for the appearance of the giant component in ${\mathcal G(n,r)}$. We then show that for any constant $0 < r < r_c$, ${tw}(G)=\Theta(\frac{\log n}{\log \log n})$, and for $c$ being sufficiently large, and $r=r(n) \geq c$, ${tw}(G)=\Theta(r \sqrt{n})$. Our proofs show that for the corresponding values of $r$ the same asymptotic bounds also hold for the pathwidth and the treedepth of a random geometric graph.

Details

Language :
English
ISSN :
08954801
Database :
OpenAIRE
Journal :
Symposium on Theoretical Aspects of Computer Science, STACS'12 (29th Symposium on Theoretical Aspects of Computer Science), STACS'12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012, Paris, France. pp.408-419, Symposium on Theoretical Aspects of Computer Science, Feb 2012, Paris, France, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), SIAM Journal on Discrete Mathematics, SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2017, Recercat. Dipósit de la Recerca de Catalunya, instname
Accession number :
edsair.doi.dedup.....afd1f4102463a10e72b879c2d32ca8ea