Back to Search Start Over

The expressive power of analog recurrent neural networks on infinite input streams

Authors :
Alessandro E. P. Villa
Jérémie Cabessa
Inserm U836, équipe 7, Nanomédecine et cerveau
Grenoble Institut des Neurosciences (GIN)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)
INSERM U836, équipe 7, Nanomédecine et cerveau
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Department of Information Systems
Université de Lausanne = University of Lausanne (UNIL)-Université de Lausanne = University of Lausanne (UNIL)
Issartel, Jean-Paul
Université de Lausanne (UNIL)-Université de Lausanne (UNIL)
Source :
Theor Compt Sci, Theor Compt Sci, 2012, 436, pp.23-34. ⟨10.1016/j.tcs.2012.01.042⟩
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

International audience; We consider analog recurrent neural networks working on in nite input streams, provide a complete topological characterization of their expressive power, and compare it to the expressive power of classical in nite word reading abstract machines. More precisely, we consider analog recurrent neural networks as language recognizers over the Cantor space, and prove that the classes of !-languages recognized by deterministic and non-deterministic analog networks correspond precisely to the respective classes of 02 -sets and 11 -sets of the Cantor space. Furthermore, we show that the result can be generalized to more expressive analog networks equipped with any kind of Borel accepting condition. Therefore, in the deterministic case, the expressive power of analog neural nets turns out to be comparable to the expressive power of any kind of Buchi abstract machine, whereas in the non-deterministic case, analog recurrent networks turn out to be strictly more expressive than any other kind of Buchi or Muller abstract machine, including the main cases of classical automata, 1-counter automata, k-counter automata, pushdown automata, and Turing machines.

Details

ISSN :
03043975
Volume :
436
Database :
OpenAIRE
Journal :
Theoretical Computer Science
Accession number :
edsair.doi.dedup.....afd0009029fa20d955b235956d5cb8df
Full Text :
https://doi.org/10.1016/j.tcs.2012.01.042