Back to Search Start Over

Travelling wave solutions for a non-local evolutionary-epidemic system

Authors :
L. Abi Rizk
Jean-Baptiste Burie
Arnaud Ducrot
Université de Bordeaux (UB)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Appliquées du Havre (LMAH)
Université Le Havre Normandie (ULH)
Normandie Université (NU)-Normandie Université (NU)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, 2019, 267 (2), pp.1467-1509. ⟨10.1016/j.jde.2019.02.012⟩
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

In this work we study the travelling wave solutions for a spatially distributed system of equations modelling the evolutionary epidemiology of plant-pathogen interaction. Here the mutation process is described using a non-local convolution operator in the phenotype space. Using dynamical system ideas coupled with refined estimates on the asymptotic behaviour of the profiles, we prove that the wave solutions have a rather simple structure. This analysis allows us to reduce the infinite dimensional travelling wave profile system of equations to a four dimensional ode system. The latter is used to prove the existence of travelling wave solutions for any wave speed larger than a minimal wave speed c ⋆ , provided some parameters condition expressed using the principle eigenvalue of some integral operator. It is also used to prove that any travelling wave solution connects two determined stationary states.

Details

ISSN :
00220396 and 10902732
Volume :
267
Database :
OpenAIRE
Journal :
Journal of Differential Equations
Accession number :
edsair.doi.dedup.....afbbb893aabcc4bf5e1a9e8a9dbe716b
Full Text :
https://doi.org/10.1016/j.jde.2019.02.012