Back to Search Start Over

Traitement de données RGB et Lidar à extrêmement haute résolution: retombées de la compétition de fusion de données 2015 de l'IEEE GRSS - Partie A / compétition 2D

Authors :
Devis Tuia
Bertrand Le Saux
Hicham Randrianarivo
Adriana Romero-Soriano
Marin Ferecatu
Adrien Lagrange
Stéphane Herbin
Anne Beaupere
Gabriele Moser
Adrien Chan-Hon-Tong
Michal Shimoni
Gustau Camps-Valls
Alexandre Boulch
Carlo Gatta
Manuel Campos-Taberner
Universitat de València (UV)
Universitat de Barcelona (UB)
Universitat Autònoma de Barcelona (UAB)
ONERA - The French Aerospace Lab [Palaiseau]
ONERA-Université Paris Saclay (COmUE)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Centre d'études et de recherche en informatique et communications (CEDRIC)
Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
Royal Military Academy (RMA)
University of Genoa (UNIGE)
Universität Zürich [Zürich] = University of Zurich (UZH)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Office National d'Etudes et Recherches Aérospatiales - ONERA (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
University of Zurich
Tuia, Devis
Source :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2016, 9 (12), p. 5547-5559. ⟨10.1109/JSTARS.2016.2569162⟩, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 9, Iss 12, Pp 5547-5559 (2016)
Publication Year :
2016
Publisher :
Institute of Electrical and Electronics Engineers, 2016.

Abstract

International audience; In this paper, we discuss the scientific outcomes of the 2015 data fusion contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource studies. The 2015 edition of the contest proposed a multiresolution and multisensorial challenge involving extremely high-resolution RGB images and a three-dimensional (3-D) LiDAR point cloud. The competition was framed in two parallel tracks, considering 2-D and 3-D products, respectively. In this paper, we discuss the scientific results obtained by the winners of the 2-D contest, which studied either the complementarity of RGB and LiDAR with deep neural networks (winning team) or provided a comprehensive benchmarking evaluation of new classification strategies for extremely high-resolution multimodal data (runner-up team). The data and the previously undisclosed ground truth will remain available for the community and can be obtained at http://www.grss-ieee.org/community/technical-committees/data-fusion/2015-ieee-grss-data-fusion-contest/. The 3-D part of the contest is discussed in the Part-B paper [1].

Details

Language :
English
ISSN :
19391404
Database :
OpenAIRE
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2016, 9 (12), p. 5547-5559. ⟨10.1109/JSTARS.2016.2569162⟩, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 9, Iss 12, Pp 5547-5559 (2016)
Accession number :
edsair.doi.dedup.....afb1c1d8592fc494af6dc6ca4402ed7b
Full Text :
https://doi.org/10.1109/JSTARS.2016.2569162⟩