Back to Search Start Over

Chaperone-Mediated Autophagy Promotes Beclin1 Degradation in Persistently Infected Hepatitis C Virus Cell Culture

Authors :
Rajesh Panigrahi
Antoinette Bell
Donkita Danielle Williams
Krzysztof Reiss
Yucel Aydin
Zahra Heidari
Srinivas Chava
Christopher M. Stephens
Kylar Wiltz
Wallace Wilson
Srikanta Dash
Source :
The American Journal of Pathology. 188:2339-2355
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Liver cirrhosis is an independent risk factor for hepatocellular carcinoma (HCC). The mechanisms that contribute to HCC development in the cirrhotic microenvironment are unknown. We found that HCC grown in the highly stressed cirrhotic microenvironment undergoes autophagy switching from a protective state characterized by high macroautophagy with low chaperone-mediated autophagy (CMA) to an HCC-promoting state characterized by low macroautophagy with high CMA. This study examined how the stress response executes oncogenic cell programming through autophagy switching using hepatitis C virus cell culture. Protein kinase R–like endoplasmic reticulum kinase expression increased to high levels in hepatitis C virus culture. Protein kinase R–like endoplasmic reticulum kinase–dependent activation of nuclear factor erythroid 2–related factor (Nrf2) led to increased transcription of the cytoprotective genes: heat shock cognate 70 kDa protein and lysosome-associated membrane protein 2A (LAMP2A) and precipitated the induction of CMA. CMA selectively targeted beclin1 degradation, leading to accumulation of the autophagy flux protein p62 due to impaired autophagosome-endosome fusion. This impaired autophagosome-endosome fusion due to beclin1 degradation inhibited endocytosis and degradation of epidermal growth factor receptor. Silencing Nrf2 and LAMP2A reduced cell viability, suggesting that the stress response activates CMA as a compensatory mechanism of cell survival. We report a novel mechanism through which stress response triggers oncogenic Nrf2 signaling that promotes autophagy switching to favor cell survival.

Details

ISSN :
00029440
Volume :
188
Database :
OpenAIRE
Journal :
The American Journal of Pathology
Accession number :
edsair.doi.dedup.....afa6dfefc120606378573c642b5ab8e4
Full Text :
https://doi.org/10.1016/j.ajpath.2018.06.022