Back to Search Start Over

A Joint Lateral Motion—Stereo Constraint

Authors :
Yiya Chen
Zhimo Yao
Zhifen He
Ziyun Cheng
Pi-Chun Huang
Seung Hyun Min
Fan Lu
Robert F. Hess
Jiawei Zhou
Source :
Investigative Ophthalmology & Visual Science
Publication Year :
2022
Publisher :
The Association for Research in Vision and Ophthalmology, 2022.

Abstract

Purpose We developed a stereo task that is based on a motion direction discrimination to examine the role that depth can play in disambiguating motion direction. Methods In this study, we quantified normal adults’ static and dynamic (i.e., laterally moving) stereoscopic performance using a psychophysical task, where we dichoptically presented randomly arranged, limited lifetime Gabor elements at two depth planes (one plane was at the fixation plane and the other at an uncrossed disparity relative to the fixation plane). Each plane contained half of the elements. For the dynamic condition, all elements were vertically oriented and moved to the left in one plane and to the right in another plane; for the static condition, the elements were horizontally oriented in one plane and vertically oriented in another plane. Results For the range of motion speed that we measured (from 0.17°/s to 5.33°/s), we observed clear speed tuning of the stereo sensitivity (P = 3.0 × 10−5). The shape of this tuning did not significantly change with different spatial frequencies. We also found a significant difference in stereo sensitivity between stereopsis with static and laterally moving stimuli (speed = 0.67°/s; P = 0.004). Such difference was not evident when we matched the task between the static and moving stimuli. Conclusions We report that lateral motion modulates human global depth perception. This motion/stereo constraint is related to motion velocity not stimulus temporal frequency. We speculate that the processing of motion-based stereopsis of the kind reported here occurs in dorsal extrastriate cortex.

Details

Language :
English
ISSN :
15525783 and 01460404
Volume :
63
Issue :
1
Database :
OpenAIRE
Journal :
Investigative Ophthalmology & Visual Science
Accession number :
edsair.doi.dedup.....af859a52b8676c279fac3262ee475533