Back to Search Start Over

Nilotinib interferes with cell cycle, ABC transporters and JAK-STAT signaling pathway in CD34+/lin- cells of patients with chronic phase chronic myeloid leukemia after 12 months of treatment

Authors :
Lorenza Borin
Francesco Spina
Alessandra Trojani
Mauro Turrini
Chiara Elena
Ester Pungolino
Cristina Bucelli
Roberto Cairoli
Giacomo Baruzzo
Alessandra Perego
Pierangelo Spedini
Gabriella De Canal
Mariella D'Adda
Maria Luisa Latargia
Barbara Di Camillo
Alessandra Dal Molin
Maria Cristina Carraro
Michela Anghilieri
Milena Lodola
Giuseppe Rossi
Simona Malato
Salvatore Artale
Enrica Morra
Alessandra Iurlo
Alessandra, T
Ester, P
Alessandra Dal, M
Milena, L
Giuseppe, R
Mariella, D
Alessandra, P
Chiara, E
Mauro, T
Lorenza, B
Cristina, B
Simona, M
Maria Cristina, C
Francesco, S
Maria Luisa, L
Salvatore, A
Pierangelo, S
Michela, A
Barbara Di, C
Giacomo, B
Gabriella De, C
Alessandra, I
Enrica, M
Cairoli, R
Source :
PLoS ONE, PLoS ONE, Vol 14, Iss 7, p e0218444 (2019)
Publication Year :
2019
Publisher :
Public Library of Science, 2019.

Abstract

Chronic myeloid leukemia (CML) is characterized by the constitutive tyrosine kinase activity of the oncoprotein BCR-ABL1 in myeloid progenitor cells that activates multiple signal transduction pathways leading to the leukemic phenotype. The tyrosine-kinase inhibitor (TKI) nilotinib inhibits the tyrosine kinase activity of BCR-ABL1 in CML patients. Despite the success of nilotinib treatment in patients with chronic-phase (CP) CML, a population of Philadelphia-positive (Ph+) quiescent stem cells escapes the drug activity and can lead to drug resistance. The molecular mechanism by which these quiescent cells remain insensitive is poorly understood. The aim of this study was to compare the gene expression profiling (GEP) of bone marrow (BM) CD34+/lin- cells from CP-CML patients at diagnosis and after 12 months of nilotinib treatment by microarray, in order to identify gene expression changes and the dysregulation of pathways due to nilotinib action. We selected BM CD34+/lin- cells from 78 CP-CML patients at diagnosis and after 12 months of first-line nilotinib therapy and microarray analysis was performed. GEP bioinformatic analyses identified 2,959 differently expressed probes and functional clustering determined some significantly enriched pathways between diagnosis and 12 months of nilotinib treatment. Among these pathways, we observed the under expression of 26 genes encoding proteins belonging to the cell cycle after 12 months of nilotinib treatment which led to the up-regulation of chromosome replication, cell proliferation, DNA replication, and DNA damage checkpoint at diagnosis. We demonstrated the under expression of the ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCD3 encoding proteins which pumped drugs out of the cells after 12 months of nilotinib. Moreover, GEP data demonstrated the deregulation of genes involved in the JAK-STAT signaling pathway. The down-regulation of JAK2, IL7, STAM, PIK3CA, PTPN11, RAF1, and SOS1 key genes after 12 months of nilotinib could demonstrate the up-regulation of cell cycle, proliferation and differentiation via MAPK and PI3K-AKT signaling pathways at diagnosis.

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
7
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....af75033faa7817e3679cc53f005d79cd