Back to Search
Start Over
Steatosis, inflammasome upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH
- Source :
- Lab Invest
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease globally. miRNAs (miRs) regulate various cellular events that lead to NAFLD. In this study we tested the hypothesis that miR-155 is an important regulator of steatohepatitis and fibrosis pathways. Wild type (WT) or miR-155 deficient (KO) mice received a high fat-high cholesterol-high sugar-diet (HF-HC-HS) for 34 weeks and liver tissues were analyzed. In patients with nonalcoholic steatohepatitis and in the mouse model of HF-HC-HS diet we found increased miR-155 levels in the liver compared to normal livers. Upon HF-HC-HS diet feeding, miR-155 KO mice displayed less liver injury, decreased steatosis, and attenuation in fibrosis compared to WT mice. ALT, triglyceride levels, and genes involved in fatty acid metabolic pathway were increased in WT mice whereas miR-155 KO mice showed attenuation in these parameters. HF-HC-HS diet-induced significant increase in the expression of NLRP3 inflammasome components in the livers of WT mice compared to chow fed diet. Compared to WT mice, miR-155 KO showed attenuated induction in the NLRP3, ASC, and caspase1 inflammasome expression on HF-HC-HS diet. Fibrosis markers such as collagen content and deposition, αSMA, Zeb2, and vimentin were all increased in WT mice and miR-155 KO mice showed attenuated fibrosis marker expression. Overall, our findings highlight a role for miR-155 in HF-HC-HS diet-induced steatosis and liver fibrosis.
- Subjects :
- Male
medicine.medical_specialty
Dietary Sugars
Inflammasomes
Diet, High-Fat
Chronic liver disease
Article
Pathology and Forensic Medicine
chemistry.chemical_compound
Non-alcoholic Fatty Liver Disease
Fibrosis
Internal medicine
NLR Family, Pyrin Domain-Containing 3 Protein
Nonalcoholic fatty liver disease
medicine
Animals
Molecular Biology
Mice, Knockout
Liver injury
Triglyceride
business.industry
Inflammasome
Cell Biology
Lipid Metabolism
medicine.disease
MicroRNAs
Endocrinology
Gene Expression Regulation
Liver
chemistry
Steatohepatitis
Steatosis
business
medicine.drug
Subjects
Details
- ISSN :
- 00236837
- Volume :
- 101
- Database :
- OpenAIRE
- Journal :
- Laboratory Investigation
- Accession number :
- edsair.doi.dedup.....af692ed44c9bcb58616b614ab79e5156