Back to Search
Start Over
Species Identification and In Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Clinical Isolates from a French Multicenter Study
- Source :
- Antimicrobial Agents and Chemotherapy, Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 2018, 62 (5), ⟨10.1128/AAC.02315-17⟩, Antimicrobial Agents and Chemotherapy, 2018, 62 (5), ⟨10.1128/AAC.02315-17⟩
- Publication Year :
- 2018
- Publisher :
- HAL CCSD, 2018.
-
Abstract
- Aspergillus section Terrei is a species complex currently comprised of 14 cryptic species whose prevalence in clinical samples as well as antifungal susceptibility are poorly known. The aims of this study were to investigate A. Terrei clinical isolates at the species level and to perform antifungal susceptibility analyses by reference and commercial methods. Eighty-two clinical A. Terrei isolates were collected from 8 French university hospitals. Molecular identification was performed by sequencing parts of beta-tubulin and calmodulin genes. MICs or minimum effective concentrations (MECs) were determined for 8 antifungal drugs using both EUCAST broth microdilution (BMD) methods and concentration gradient strips (CGS). Among the 79 A. Terrei isolates, A. terreus stricto sensu ( n = 61), A. citrinoterreus ( n = 13), A. hortai ( n = 3), and A. alabamensis ( n = 2) were identified. All strains had MICs of ≥1 mg/liter for amphotericin B, except for two isolates (both A. hortai ) that had MICs of 0.25 mg/liter. Four A. terreus isolates were resistant to at least one azole drug, including one with pan-azole resistance, yet no mutation in the CYP51A gene was found. All strains had low MECs for the three echinocandins. The essential agreements (EAs) between BMD and CGS were >90%, except for those of amphotericin B (79.7%) and itraconazole (73.4%). Isolates belonging to the A . section Terrei identified in clinical samples show wider species diversity beyond the known A. terreus sensu stricto . Azole resistance inside the section Terrei is uncommon and is not related to CYP51A mutations here. Finally, CGS is an interesting alternative for routine antifungal susceptibility testing.
- Subjects :
- 0301 basic medicine
Pharmacology
chemistry.chemical_classification
Aspergillus
Species complex
biology
Itraconazole
030106 microbiology
Broth microdilution
biology.organism_classification
bacterial infections and mycoses
Microbiology
03 medical and health sciences
Infectious Diseases
chemistry
[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases
Amphotericin B
medicine
Azole
Pharmacology (medical)
Aspergillus terreus
Etest
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 00664804 and 10986596
- Database :
- OpenAIRE
- Journal :
- Antimicrobial Agents and Chemotherapy, Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 2018, 62 (5), ⟨10.1128/AAC.02315-17⟩, Antimicrobial Agents and Chemotherapy, 2018, 62 (5), ⟨10.1128/AAC.02315-17⟩
- Accession number :
- edsair.doi.dedup.....af6375575d31130d2c087f1d27f85cab