Back to Search
Start Over
Burning, but Not Dying: the Failure of Pyroptotic Cell Death in Hepatocytes
- Source :
- Cellular and Molecular Gastroenterology and Hepatology
- Publication Year :
- 2021
-
Abstract
- Background Pyroptosis, gasdermin-mediated programmed cell death, is readily induced in macrophages by activation of the canonical inflammasome (caspase-1) or by intracellular lipopolysaccharide (LPS)-mediated non-canonical inflammasome (caspase-11) activation. However, whether pyroptosis is induced similarly in hepatocytes is still largely controversial but highly relevant to liver pathologies such as alcoholic/nonalcoholic liver disease, drug-induced liver injury, ischemia-reperfusion and liver transplant injury, or organ damage secondary to sepsis. Methods and Results In this study we found that hepatocytes activate and cleave gasdermin-D (GSDMD) at low levels after treatment with LPS. Overexpression of caspase-1 or caspase-11 p10/p20 activated domains was able to induce typical GSDMD-dependent pyroptosis in hepatocytes both in vitro and in vivo. However, morphologic features of pyroptosis in macrophages (eg, pyroptotic bodies, cell flattening, loss of cell structure) did not occur in pyroptotic hepatocytes, with cell structure remaining relatively intact despite the cell membrane being breached. Our results suggest that hepatocytes activate pyroptosis pathways and cleave GSDMD, but this does not result in cell rupture and confer the same pyroptotic morphologic changes as previously reported in macrophages. This is true even with caspase-1 or caspase-11 artificial overexpression way above levels seen endogenously even after priming or in pathologic conditions. Conclusions Our novel findings characterize hepatocyte morphology in pyroptosis and suggest alternative use for canonical/non-canonical inflammasome activation/signaling and subsequent GSDMD cleavage because there is no rapid cell death as in macrophages. Improved understanding and recognition of the role of these pathways in hepatocytes may result in novel therapeutics for a range of liver diseases.<br />Graphical abstract
- Subjects :
- NINJ1, nerve injury-induced protein 1
RCD, regulated cell death
Inflammasomes
PBS, phosphate-buffered saline
GSDMD, gasdermin-D
AST, aspartate aminotransferase
GSDME, gasdermin-E
RT-PCR, real-time polymerase chain reaction
Caspase-11
Gasdermin-D
VP, virus particles
ALT, alanine aminotransferase
Pyroptosis
NPC, nonparenchymal cells
Original Research
GFP, green fluorescent protein
Hepatology
LDH, lactate dehydrogenase
Liver Disease
Gastroenterology
Programmed Cell Death
WT, wild-type
HMGB1, high mobility group box 1
IL, interleukin
Caspase-1
Hepatocytes
LPS, lipopolysaccharide
SD, standard deviation
IHC, immunohistochemistry
Subjects
Details
- ISSN :
- 2352345X
- Volume :
- 13
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Cellular and molecular gastroenterology and hepatology
- Accession number :
- edsair.doi.dedup.....af3722f8071c1c832d9757b616463383