Back to Search Start Over

Interaction of Insulin Receptor Substrate-1 with the ς3A Subunit of the Adaptor Protein Complex-3 in Cultured Adipocytes

Authors :
Barbara VanRenterghem
Michael P. Czech
Michelle Morin
Robin A. Heller-Harrison
Source :
Journal of Biological Chemistry. 273:29942-29949
Publication Year :
1998
Publisher :
Elsevier BV, 1998.

Abstract

Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.

Details

ISSN :
00219258
Volume :
273
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....af19df5903b2620dd00f0bedeccf6c9a
Full Text :
https://doi.org/10.1074/jbc.273.45.29942