Back to Search
Start Over
Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera
- Source :
- BMC Genomics, Vol 22, Iss 1, Pp 1-16 (2021), BMC Genomics
- Publication Year :
- 2021
- Publisher :
- BMC, 2021.
-
Abstract
- Background Grapevine (Vitis vinifera) productivity has been severely affected by various bacterial, viral and fungal diseases worldwide. When a plant is infected with the pathogen, various defense mechanisms are subsequently activated in plants at various molecular levels. Thus, for substantiating the disease control in an eco-friendly way, it is essential to understand the molecular mechanisms governing pathogen resistance in grapes. Results In our study, we performed genome-wide identification of various defensive genes expressed during powdery mildew (PM) and downy mildew (DM) infections in grapevine. Consequently, we identified 6, 21, 2, 5, 3 and 48 genes of Enhanced Disease Susceptibility 1 (EDS1), Non-Race-specific Disease Resistance (NDR1), Phytoalexin deficient 4 (PAD4), Nonexpressor of PR Gene (NPR), Required for Mla-specified resistance (RAR) and Pathogenesis Related (PR), respectively, in the grapevine genome. The phylogenetic study revealed that V. vinifera defensive genes are evolutionarily related to Arabidopsis thaliana. Differential expression analysis resulted in identification of 2, 4, 7, 2, 4, 1 and 7 differentially expressed Nucleotide-binding leucine rich repeat receptor (NLR), EDS1, NDR1, PAD4, NPR, RAR1 and PR respectively against PM infections and 28, 2, 5, 4, 1 and 19 differentially expressed NLR, EDS1, NDR1, NPR, RAR1 and PR respectively against DM infections in V. vinifera. The co-expression study showed the occurrence of closely correlated defensive genes that were expressed during PM and DM stress conditions. Conclusion The PM and DM responsive defensive genes found in this study can be characterized in future for impelling studies relaying fungal and oomycete resistance in plants, and the functionally validated genes would then be available for conducting in-planta transgenic gene expression studies for grapes.
- Subjects :
- Plant disease resistance
Mildew resistance
QH426-470
Biotic stress
Gene Expression Regulation, Plant
Genetics
Humans
Arabidopsis thaliana
Vitis
Gene
Phylogeny
Plant Diseases
Plant Proteins
chemistry.chemical_classification
Oomycete
biology
Host-pathogen interactions
Phytoalexin
fungi
food and beverages
biology.organism_classification
Oomycetes
chemistry
Downy mildew
Grapevine
Powders
Defense related genes
Powdery mildew
TP248.13-248.65
Research Article
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 14712164
- Volume :
- 22
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC Genomics
- Accession number :
- edsair.doi.dedup.....af1423461450ef97cc4eeb13f5467280