Back to Search
Start Over
Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey
- Source :
- Forest Ecosystems, Vol 5, Iss 1, Pp 1-12 (2018)
- Publication Year :
- 2018
- Publisher :
- SpringerOpen, 2018.
-
Abstract
- Background Leaf Area Index (LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network (ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands. Methods One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands. Results The correlation coefficients between LAI and stand parameters (stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters (R 2 adj. = 0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4–19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI (SSE (12.1040), MSE (0.1223), RMSE (0.3497), AIC (0.1040), BIC (− 77.7310) and R 2 (0.6392)) compared to the other studied techniques. Conclusion The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
- Subjects :
- 0106 biological sciences
Multivariate statistics
010504 meteorology & atmospheric sciences
Multivariate linear regression model
Site index
01 natural sciences
Basal area
Crimean pine
Bayesian multivariate linear regression
lcsh:QH540-549.5
Statistics
Forest ecology
Leaf area index
Quadratic mean diameter
Ecology, Evolution, Behavior and Systematics
0105 earth and related environmental sciences
Nature and Landscape Conservation
Mathematics
Ecology
Forestry
Regression analysis
Stand parameters
Artificial neural network modeling
lcsh:Ecology
010606 plant biology & botany
Subjects
Details
- Language :
- English
- ISSN :
- 21975620
- Volume :
- 5
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Forest Ecosystems
- Accession number :
- edsair.doi.dedup.....aef306a443e03b65e716b6e7d0db3e8d
- Full Text :
- https://doi.org/10.1186/s40663-018-0149-8