Back to Search
Start Over
Massive Tandem Proliferation of ELIPs Supports Convergent Evolution of Desiccation Tolerance across Land Plants
- Source :
- Plant physiology. 179(3)
- Publication Year :
- 2018
-
Abstract
- Desiccation tolerance was a critical adaptation for the colonization of land by early nonvascular plants. Resurrection plants have maintained or rewired these ancestral protective mechanisms, and desiccation-tolerant species are dispersed across the land plant phylogeny. Although common physiological, biochemical, and molecular signatures are observed across resurrection plant lineages, features underlying the recurrent evolution of desiccation tolerance are unknown. Here we used a comparative approach to identify patterns of genome evolution and gene duplication associated with desiccation tolerance. We identified a single gene family with dramatic expansion in all sequenced resurrection plant genomes and no expansion in desiccation-sensitive species. This gene family of early light-induced proteins (ELIPs) expanded in resurrection plants convergent through repeated tandem gene duplication. ELIPs are universally highly expressed during desiccation in all surveyed resurrection plants and may play a role in protecting against photooxidative damage of the photosynthetic apparatus during prolonged dehydration. Photosynthesis is particularly sensitive to dehydration, and the increased abundance of ELIPs may help facilitate the rapid recovery observed for most resurrection plants. Together, these observations support convergent evolution of desiccation tolerance in land plants through tandem gene duplication.
- Subjects :
- 0106 biological sciences
Recurrent evolution
Research Report
Genome evolution
Physiology
ved/biology.organism_classification_rank.species
Resurrection plant
Plant Science
Biology
01 natural sciences
Desiccation tolerance
Evolution, Molecular
Stress, Physiological
Convergent evolution
Gene Duplication
Gene duplication
Genetics
Gene family
Desiccation
Phylogeny
Plant Physiological Phenomena
Plant Proteins
ved/biology
food and beverages
Plants
Evolutionary biology
Genome, Plant
010606 plant biology & botany
Subjects
Details
- ISSN :
- 15322548
- Volume :
- 179
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Plant physiology
- Accession number :
- edsair.doi.dedup.....aed798e04ceca522da5ce091e38124a5