Back to Search Start Over

Vector extensions for decision support DBMS acceleration

Authors :
Oscar Palomar
Osman Unsal
Mateo Valero
Adrian Cristal
Timothy Hayes
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), MICRO
Publisher :
IEEE

Abstract

Database management systems (DBMS) have become an essential tool for industry and research and are often a significant component of data centres. As a result of this criticality, efficient execution of DBMS engines has become an important area of investigation. This work takes a top-down approach to accelerating decision support systems (DSS) on x86-64 microprocessors using vector ISA exten- sions. In the first step, a leading DSS DBMS is analysed for potential data-level parallelism. We discuss why the existing multimedia SIMD extensions (SSE/AVX) are not suitable for capturing this parallelism and propose a complementary instruction set reminiscent of classical vector architectures. The instruction set is implemented using unin- trusive modifications to a modern x86-64 microarchitecture tailored for DSS DBMS. The ISA and microarchitecture are evaluated using a cycle-accurate x86-64 microarchitectural simulator coupled with a highly-detailed memory simulator. We have found a single oper- ator is responsible for 41% of total execution time for the TPC-H DSS benchmark. Our results show performance speedups between 1.94x and 4.56x for an implementation of this operator run with our proposed hardware modifications.

Details

Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), MICRO
Accession number :
edsair.doi.dedup.....aec6e21a9b138bb4abfaec9993638f2c