Back to Search Start Over

Two-dimensional segmentation for analyzing Hi-C data

Authors :
Stéphane Robin
Céline Lévy-Leduc
Tristan Mary-Huard
Maud Delattre
Mathématiques et Informatique Appliquées (MIA-Paris)
AgroParisTech-Institut National de la Recherche Agronomique (INRA)
Département de Mathématiques [ORSAY]
Université Paris-Sud - Paris 11 (UP11)
Génétique Quantitative et Evolution - Le Moulon (Génétique Végétale) (GQE-Le Moulon)
Centre National de la Recherche Scientifique (CNRS)-AgroParisTech-Université Paris-Sud - Paris 11 (UP11)-Institut National de la Recherche Agronomique (INRA)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Institut National de la Recherche Agronomique (INRA)-Université Paris-Sud - Paris 11 (UP11)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
Source :
Bioinformatics, Bioinformatics, Oxford University Press (OUP), 2014, 30 (17), pp.i386-i392. ⟨10.1093/bioinformatics/btu443⟩, ECCB 2014: The 13th European Conference on Computational Biology, ECCB 2014: The 13th European Conference on Computational Biology, Sep 2014, Strasbourg, France. pp.386-392, ⟨10.1093/bioinformatics/btu443⟩, Bioinformatics 17 ( 30), 386-392. (2014)
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Motivation: The spatial conformation of the chromosome has a deep influence on gene regulation and expression. Hi-C technology allows the evaluation of the spatial proximity between any pair of loci along the genome. It results in a data matrix where blocks corresponding to (self-)interacting regions appear. The delimitation of such blocks is critical to better understand the spatial organization of the chromatin. From a computational point of view, it results in a 2D segmentation problem. Results: We focus on the detection of cis-interacting regions, which appear to be prominent in observed data. We define a block-wise segmentation model for the detection of such regions. We prove that the maximization of the likelihood with respect to the block boundaries can be rephrased in terms of a 1D segmentation problem, for which the standard dynamic programming applies. The performance of the proposed methods is assessed by a simulation study on both synthetic and resampled data. A comparative study on public data shows good concordance with biologically confirmed regions. Availability and implementation: The HiCseg R package is available from the Comprehensive R Archive Network and from the Web page of the corresponding author. Contact: celine.levy-leduc@agroparistech.fr

Details

Language :
English
ISSN :
13674803 and 14602059
Database :
OpenAIRE
Journal :
Bioinformatics, Bioinformatics, Oxford University Press (OUP), 2014, 30 (17), pp.i386-i392. ⟨10.1093/bioinformatics/btu443⟩, ECCB 2014: The 13th European Conference on Computational Biology, ECCB 2014: The 13th European Conference on Computational Biology, Sep 2014, Strasbourg, France. pp.386-392, ⟨10.1093/bioinformatics/btu443⟩, Bioinformatics 17 ( 30), 386-392. (2014)
Accession number :
edsair.doi.dedup.....aec11671b50ee60f0ee0b451f6b3e7a4