Back to Search Start Over

Landscape regularity modelling for environmental challenges in agriculture

Authors :
El Ghali Lazrak
Marc Benoit
Jean-François Mari
Agro-Systèmes Territoires Ressources Mirecourt (ASTER Mirecourt)
Institut National de la Recherche Agronomique (INRA)
Knowledge representation, reasonning (ORPAILLEUR)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
CNRS Centre d'études biologiques de Chizé
INRA SAD
ANR-07-BDIV-0002,BIODIVAGRIM,Conservation de la biodiversité dans les agro-écosystèmes une modélisation spatialement explicite des paysages(2007)
Unité de recherche SAD ASTER - Station de Mirecourt (INRA SAD)
ANR: BiodivAgrim,BiodivAgrim
Source :
Landscape Ecology, Landscape Ecology, Springer Verlag, 2009, Landscape Ecology, 25 (2), pp.169-183. ⟨10.1007/s10980-009-9399-8⟩, Landscape Ecology, 2009, Landscape Ecology, 25 (2), pp.169-183. ⟨10.1007/s10980-009-9399-8⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; In agricultural landscapes, methods to identify and describe meaningful landscape patterns play an important role to understand the interaction between landscape organization and ecological processes. We propose an innovative stochastic modelling method of agricultural landscape organization where the temporal regularities in land-use are first identified through recognized Land-Use Successions (LUS) before locating these successions in landscapes. These time-space regularities within landscapes are extracted using a new data mining method based on Hidden Markov Models. We applied this methodological proposal to the Niort Plain (West of France). We built a temporo-spatial analysis for this case study through spatially explicit analysis of Land Use Succession (LUS) dynamics. Implications and perspectives of such an approach, which links together the temporal and the spatial dimensions of the agricultural organization, are discussed by assessing the relationship between the agricultural landscape patterns defined using this approach and ecological data through an illustrative example of bird nests.

Details

Language :
English
ISSN :
09212973 and 15729761
Database :
OpenAIRE
Journal :
Landscape Ecology, Landscape Ecology, Springer Verlag, 2009, Landscape Ecology, 25 (2), pp.169-183. ⟨10.1007/s10980-009-9399-8⟩, Landscape Ecology, 2009, Landscape Ecology, 25 (2), pp.169-183. ⟨10.1007/s10980-009-9399-8⟩
Accession number :
edsair.doi.dedup.....aea177450668c6ae0729fc9dcc96ee5c
Full Text :
https://doi.org/10.1007/s10980-009-9399-8⟩