Back to Search Start Over

Multidrug resistance protein-mediated transport of chlorambucil and melphalan conjugated to glutathione

Authors :
A Pourtier-Manzanedo
Jörg König
Karin Barnouin
Gabriele Jedlitschky
Dietrich Keppler
W D Lehmann
Inka Leier
Source :
British Journal of Cancer
Publication Year :
1998
Publisher :
Nature Publishing Group, 1998.

Abstract

The human multidrug resistance protein (MRP1) confers resistance of cells to a number of different cytostatic drugs and functions as an export pump for glutathione S-conjugates, glucuronides and other amphiphilic anions. The present study details for the first time MRP1-mediated ATP-dependent transport of various glutathione S-conjugates of the bifunctional alkylating agents chlorambucil and melphalan. In membrane vesicles prepared from cells expressing recombinant MRP1, the conjugates were transported at rates in the following order: monoglutathionyl chlorambucil > bisglutathionyl chlorambucil > monohydroxy monoglutathionyl chlorambucil and monoglutathionyl melphalan > monohydroxy monoglutathionyl melphalan. In addition, we show that membranes from chlorambucil-resistant GST-alpha-overexpressing CHO cells as well as from their parental cells express the hamster homologue of MRP1. With both CHO cell membrane preparations, we observed ATP-dependent transport of monoglutathionyl chlorambucil and of leukotriene C4, a glutathione S-conjugate and high-affinity substrate of MRP1. The transport rates measured in the resistant cells were only two- to three-fold higher than those measured in the control cells. These results together with cytotoxicity assays comparing MRP1-overexpressing cell pairs with the CHO cell pair indicate that, although MRP1-mediated transport is active, it may not be the rate-limiting step in chlorambucil resistance in these cell lines. Images Figure 3

Details

Language :
English
ISSN :
15321827 and 00070920
Volume :
77
Issue :
2
Database :
OpenAIRE
Journal :
British Journal of Cancer
Accession number :
edsair.doi.dedup.....ae6b85422fd195a9ae7126fa21d057cc