Back to Search Start Over

Parameterized complexity dichotomy for $(r,\ell)$-Vertex Deletion

Authors :
Baste , Julien
Faria , Luerbio
Klein , Sulamita
Sau , Ignasi
Algorithmes, Graphes et Combinatoire ( ALGCO )
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier ( LIRMM )
Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS )
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
16 pages, 2 figures. 2016
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

For two integers $r, \ell \geq 0$, a graph $G = (V, E)$ is an $(r,\ell)$-graph if $V$ can be partitioned into $r$ independent sets and $\ell$ cliques. In the parameterized $(r,\ell)$-Vertex Deletion problem, given a graph $G$ and an integer $k$, one has to decide whether at most $k$ vertices can be removed from $G$ to obtain an $(r,\ell)$-graph. This problem is NP-hard if $r+\ell \geq 1$ and encompasses several relevant problems such as Vertex Cover and Odd Cycle Transversal. The parameterized complexity of $(r,\ell)$-Vertex Deletion was known for all values of $(r,\ell)$ except for $(2,1)$, $(1,2)$, and $(2,2)$. We prove that each of these three cases is FPT and, furthermore, solvable in single-exponential time, which is asymptotically optimal in terms of $k$. We consider as well the version of $(r,\ell)$-Vertex Deletion where the set of vertices to be removed has to induce an independent set, and provide also a parameterized complexity dichotomy for this problem.<br />Comment: After the first version of this article appeared in arXiv, we learnt that Kolay and Panolan [abs/1504.08120] obtained simultaneously and independently some of the results of this article

Details

Language :
English
Database :
OpenAIRE
Journal :
16 pages, 2 figures. 2016
Accession number :
edsair.doi.dedup.....ae48997f4507c8476b8ddc8f4505d4e3