Back to Search Start Over

A structural mixed model for variances in differential gene expression studies

Authors :
Isabelle Hue
Jean-Louis Foulley
Séverine A. Degrelle
Florence Jaffrézic
Guillemette Marot
Station de Génétique Quantitative et Appliquée (SGQA)
Institut National de la Recherche Agronomique (INRA)
Biologie du développement et reproduction (BDR)
Centre National de la Recherche Scientifique (CNRS)-École nationale vétérinaire d'Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA)
Baobab
Département PEGASE [LBBE] (PEGASE)
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
ProdInra, Migration
Source :
Genetics Research, Genetics Research, Cambridge University Press (CUP), 2007, 89 (1), pp.19-25, Genet. Res. Camb, Genet. Res. Camb, 2007, 89(1), pp.19-25
Publication Year :
2007
Publisher :
Hindawi Limited, 2007.

Abstract

The importance of variance modelling is now widely known for the analysis of microarray data. In particular the power and accuracy of statistical tests for differential gene expressions are highly dependent on variance modelling. The aim of this paper is to use a structural model on the variances, which includes a condition effect and a random gene effect, and to propose a simple estimation procedure for these parameters by working on the empirical variances. The proposed variance model was compared with various methods on both real and simulated data. It proved to be more powerful than the gene-by-gene analysis and more robust to the number of false positives than the homogeneous variance model. It performed well compared with recently proposed approaches such as SAM and VarMixt even for a small number of replicates, and performed similarly to Limma. The main advantage of the structural model is that, thanks to the use of a linear mixed model on the logarithm of the variances, various factors of variation can easily be incorporated in the model, which is not the case for previously proposed empirical Bayes methods. It is also very fast to compute and is adapted to the comparison of more than two conditions.

Details

ISSN :
14695073 and 00166723
Volume :
89
Database :
OpenAIRE
Journal :
Genetical Research
Accession number :
edsair.doi.dedup.....ae3ef2a2d720ef9052c711c0fb3f38ea
Full Text :
https://doi.org/10.1017/s0016672307008646