Back to Search
Start Over
Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1
- Source :
- Journal of Bacteriology 172 (1990), Scopus-Elsevier, Journal of Bacteriology, 172(1), 419-423. AMER SOC MICROBIOLOGY, Journal of Bacteriology, 172, 419-423
- Publication Year :
- 1990
- Publisher :
- American Society for Microbiology, 1990.
-
Abstract
- The uptake of 4-chlorobenzoate (4-CBA) in intact cells of the coryneform bacterium NTB-1 was investigated. Uptake and metabolism of 4-CBA were observed in cells grown in 4-CBA but not in glucose-grown cells. Under aerobic conditions, uptake of 4-CBA occurred with a high apparent affinity (apparent Kt, 1.7 microM) and a maximal velocity (Vmax) of 5.1 nmol min-1 mg of protein-1. At pH values below 7, the rate of 4-CBA uptake was greatly reduced by nigericin, an ionophore which dissipates the pH gradient across the membrane (delta pH). At higher pH values, inhibition was observed only with valinomycin, an ionophore which collapses the electrical potential across the membrane (delta psi). Under anaerobic conditions, no uptake of 4-CBA was observed unless an alternative electron acceptor was present. With nitrate as the terminal electron acceptor, 4-CBA was rapidly accumulated by the cells to a steady-state level, at which uptake of 4-CBA was balanced by excretion of 4-hydroxybenzoate. The mechanism of energy coupling to 4-CBA transport under anaerobic conditions was further examined by the imposition of an artificial delta psi, delta pH, or both. Uptake of 4-CBA was shown to be coupled to the proton motive force, suggesting a proton symport mechanism. Competition studies with various substrate analogs revealed a very narrow specificity of the 4-CBA uptake system. This is the first report of carrier-mediated transport of halogenated aromatic compounds in bacteria.
- Subjects :
- Nigericin
Ionophore
Biology
Microbiology
Industrial Microbiology
chemistry.chemical_compound
Valinomycin
Actinomycetales
Industriƫle microbiologie
Life Science
Anaerobiosis
Molecular Biology
chemistry.chemical_classification
Chemiosmosis
Substrate (chemistry)
Biological Transport
Metabolism
Hydrogen-Ion Concentration
Electron acceptor
Chlorobenzoates
chemistry
Biochemistry
Symporter
Potassium
Biophysics
Research Article
Subjects
Details
- ISSN :
- 10985530 and 00219193
- Volume :
- 172
- Database :
- OpenAIRE
- Journal :
- Journal of Bacteriology
- Accession number :
- edsair.doi.dedup.....ae3c483a553527d4d6c1177c84c45c64
- Full Text :
- https://doi.org/10.1128/jb.172.1.419-423.1990