Back to Search Start Over

The commutant of a multiplication operator with a finite Blaschke product symbol on the Sobolev disk algebra

Authors :
David R. Larson
Ruifang Zhao
Zongyao Wang
Source :
Ann. Funct. Anal. 8, no. 3 (2017), 366-376
Publication Year :
2017
Publisher :
Duke University Press, 2017.

Abstract

Let $R(\mathbb{D})$ be the algebra generated in the Sobolev space $W^{22}(\mathbb{D})$ by the rational functions with poles outside the unit disk $\overline{\mathbb{D}}$ . This is called the Sobolev disk algebra. In this article, the commutant of the multiplication operator $M_{B(z)}$ on $R(\mathbb{D})$ is studied, where $B(z)$ is an n-Blaschke product. We prove that an operator $A\in\mathcal{L}(R(\mathbb{D}))$ is in $\mathcal{A}'(M_{B(z)})$ if and only if $A=\sum_{i=1}^{n}M_{h_{i}}M_{\Delta(z)}^{-1}T_{i}$ , where $\{h_{i}\}_{i=1}^{n}\subset R(\mathbb{D})$ , and $T_{i}\in\mathcal{L}(R(\mathbb{D}))$ is given by $(T_{i}g)(z)=\sum_{j=1}^{n}(-1)^{i+j}\Delta_{ij}(z)g(G_{j-1}(z))$ , $i=1,2,\ldots,n$ , $G_{0}(z)\equiv z$ .

Details

Language :
English
Database :
OpenAIRE
Journal :
Ann. Funct. Anal. 8, no. 3 (2017), 366-376
Accession number :
edsair.doi.dedup.....ae1aecbfb5e766b2ff564524f72be347