Back to Search
Start Over
The commutant of a multiplication operator with a finite Blaschke product symbol on the Sobolev disk algebra
- Source :
- Ann. Funct. Anal. 8, no. 3 (2017), 366-376
- Publication Year :
- 2017
- Publisher :
- Duke University Press, 2017.
-
Abstract
- Let $R(\mathbb{D})$ be the algebra generated in the Sobolev space $W^{22}(\mathbb{D})$ by the rational functions with poles outside the unit disk $\overline{\mathbb{D}}$ . This is called the Sobolev disk algebra. In this article, the commutant of the multiplication operator $M_{B(z)}$ on $R(\mathbb{D})$ is studied, where $B(z)$ is an n-Blaschke product. We prove that an operator $A\in\mathcal{L}(R(\mathbb{D}))$ is in $\mathcal{A}'(M_{B(z)})$ if and only if $A=\sum_{i=1}^{n}M_{h_{i}}M_{\Delta(z)}^{-1}T_{i}$ , where $\{h_{i}\}_{i=1}^{n}\subset R(\mathbb{D})$ , and $T_{i}\in\mathcal{L}(R(\mathbb{D}))$ is given by $(T_{i}g)(z)=\sum_{j=1}^{n}(-1)^{i+j}\Delta_{ij}(z)g(G_{j-1}(z))$ , $i=1,2,\ldots,n$ , $G_{0}(z)\equiv z$ .
- Subjects :
- Discrete mathematics
Control and Optimization
Algebra and Number Theory
Blaschke product
Sobolev disk algebra
commutant
Rational function
Unit disk
Centralizer and normalizer
Sobolev space
symbols.namesake
Multiplication operator
Product (mathematics)
multiplication operator
symbols
Disk algebra
46E20
Analysis
finite Blaschke product
47B37
Mathematics
47B38
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Ann. Funct. Anal. 8, no. 3 (2017), 366-376
- Accession number :
- edsair.doi.dedup.....ae1aecbfb5e766b2ff564524f72be347