Back to Search Start Over

A Stochastic Multi-layer Algorithm for Semi-Discrete Optimal Transport with Applications to Texture Synthesis and Style Transfer

Authors :
Arthur Leclaire
Julien Rabin
Leclaire, Arthur
Models, Inference and Synthesis for Texture In Color - - MISTIC2019 - ANR-19-CE40-0005 - AAPG2019 - VALID
Generalized Optimal Transport Models for Image processing - - GOTMI2016 - ANR-16-CE33-0010 - AAPG2016 - VALID
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - - PostProdLEAP2019 - ANR-19-CE23-0027 - AAPG2019 - VALID
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Equipe Image - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
ANR-19-CE40-0005,MISTIC,Models, Inference and Synthesis for Texture In Color(2019)
ANR-16-CE33-0010,GOTMI,Generalized Optimal Transport Models for Image processing(2016)
ANR-19-CE23-0027,PostProdLEAP,Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage(2019)
Source :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2020

Abstract

International audience; This paper investigates a new stochastic algorithm to approximate semi-discrete optimal transport for large-scale problem, i.e. in high dimension and for a large number of points. The proposed technique relies on a hierarchical decomposition of the target discrete distribution and the transport map itself. A stochastic optimization algorithm is derived to estimate the parameters of the corresponding multi-layer weighted nearest neighbor model. This model allows for fast evaluation during synthesis and training, for which it exhibits faster empirical convergence. Several applications to patch-based image processing are investigated: texture synthesis, texture inpainting, and style transfer. The proposed models compare favorably to the state of the art, either in terms of image quality, computation time, or regarding the number of parameters. Additionally, they do not require any pixel-based optimization or training on a large dataset of natural images.

Details

Language :
English
ISSN :
09249907 and 15737683
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2020
Accession number :
edsair.doi.dedup.....ae1075ab028e40249ccced07a47b1610