Back to Search
Start Over
Haar wavelet method for solving initial and boundary value problems of Bratu-type
- Source :
- Scopus-Elsevier
-
Abstract
- In this paper, we present a framework to determine Haar solutions of Bratu-type equations that are widely applicable in fuel ignition of the combustion theory and heat transfer. The method is proposed by applying Haar series for the highest derivatives and integrate the series. Several examples are given to confirm the efficiency and the accuracy of the proposed algorithm. The results show that the proposed way is quite reasonable when compared to exact solution.<br />{"references":["U.M. Ascher, R. Matheij, R.D. Russell, Numerical solution of boundary\nvalue problems for ordinary differential equations, SIAM, Philadelphia,\nPA, 1995.","J.P. Boyd, Chebyshev polynomial expansions for simultaneous approximation\nof two branches of a function with application to the onedimensional\nBratu equation, Applied Mathematics and Computation 142\n(2003) 189-200.","J.P. Boyd, An analytical and numerical study of the two-dimensional\nBratu equation, Journal of Scientific Computing 1 (2) (1986) 183-206.","R. Buckmire, Investigations of nonstandard Mickens-type finitedifference\nschemes for singular boundary value problems in cylindrical\nor spherical coordinates, Numerical Methods for partial Differential\nequations 19 (3) (2003) 380-398.","R. Buckmire, Application of Mickens finite-difference scheme to the\ncylindrical Bratu Gelfand problem, doi:10.1002/num.10093.","C.F.Chen, C.H.Hsiao, Haar wavelet method for solving lumped and\ndistributed- parameter systems, IEE Proc.Pt.D 144(1) (1997) 87-94.","D.A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical\nKinetics, Princeton University Press, Princeton, NJ, 1955.","I.H.A.H. Hassan, V.S. Erturk, Applying differential transformation\nmethod to the One-dimensional planar Bratu problem, International\nJournal of Contemporary Mathematical Sciences 2 (2007) 1493-1504.","Hikmet Caglar, Nazan Caglar, Mehmet zer, Antonios Valaristo, Amalia\nN. Miliou, Antonios N. Anagnostopoulos, Dynamics of the solution of\nBratu-s Equation, Nonlinear Analysis, (Press).\n[10] C.H.Hsiao, Haar wavelet approach to linear stiff systems, Mathematics\nand Computers in simultion ,Vol 64, 2004, pp.561-567.\n[11] J. Jacobson, K. Schmitt, The Liouville-Bratu-Gelfand problem for radial\noperators, Journal of Differential Equations 184 (2002) 283-298.\n[12] U.Lepik, Numerical solution of evolution equations by the Haar wavelet\nmethod, Applied Mathematics and Computation 185 (2007) 695-704.\n[13] U.Lepik, Numerical solution of differential equations using Haar\nwavelets, Mathematics and Computers in Simulation 68 (2005) 127-143.\n[14] S. Li, S.J. Liao, An analytic approach to solve multiple solutions of a\nstrongly nonlinear problem, Applied Mathematics and Computation 169\n(2005) 854-865.\n[15] A.S. Mounim, B.M. de Dormale, From the fitting techniques to accurate\nschemes for the Liouville Bratu Gelfand problem, Numerical Methods\nfor Partial Differential Equations, doi: 10.1002/num.20116.\n[16] M.I. Syam, A. Hamdan, An efficient method for solving Bratu equations,\nApplied Mathematics and Computation 176 (2006) 704-713.\n[17] A.M. Wazwaz, A new method for solving singular initial value problems\nin the second order differential equations, Applied Mathematics and\nComputation 128 (2002) 47-57.\n[18] A.M. Wazwaz, Adomian decomposition method for a reliable treatment\nof the Bratu-type equations, Applied Mathematics and Computation 166\n(2005) 652-663."]}
Details
- Database :
- OpenAIRE
- Journal :
- Scopus-Elsevier
- Accession number :
- edsair.doi.dedup.....adffa8de0130acc96b8d6690e8f22ea9