Back to Search Start Over

How Machine Learning Will Revolutionize Electrochemical Sciences

Authors :
Aashutosh Mistry
Alejandro A. Franco
Samuel J. Cooper
Venkatasubramanian Viswanathan
Scott A. Roberts
Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS)
Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Réseau sur le stockage électrochimique de l'énergie (RS2E)
Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Engineering and Physical Sciences Research Council
Source :
ACS Energy Letters, ACS Energy Letters, 2021, 6 (4), pp.1422-1431. ⟨10.1021/acsenergylett.1c00194⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Electrochemical systems function via interconversion of electric charge and chemical species and represent promising technologies for our cleaner, more sustainable future. However, their development time is fundamentally limited by our ability to identify new materials and understand their electrochemical response. To shorten this time frame, we need to switch from the trial-and-error approach of finding useful materials to a more selective process by leveraging model predictions. Machine learning (ML) offers data-driven predictions and can be helpful. Herein we ask if ML can revolutionize the development cycle from decades to a few years. We outline the necessary characteristics of such ML implementations. Instead of enumerating various ML algorithms, we discuss scientific questions about the electrochemical systems to which ML can contribute.

Details

Language :
English
ISSN :
23808195
Database :
OpenAIRE
Journal :
ACS Energy Letters, ACS Energy Letters, 2021, 6 (4), pp.1422-1431. ⟨10.1021/acsenergylett.1c00194⟩
Accession number :
edsair.doi.dedup.....adfcce20f91c6a17ac5c393a0e1636af
Full Text :
https://doi.org/10.1021/acsenergylett.1c00194⟩