Back to Search Start Over

Virtual screening with support vector machines and structure kernels

Authors :
Pierre Mahé
Jean-Philippe Vert
Xerox Research Centre Europe [Meylan]
Xerox Company
Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre de Bioinformatique (CBIO)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Vert, Jean-Philippe
Mines Paris - PSL (École nationale supérieure des mines de Paris)
Institut Curie [Paris]-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Source :
Combinatorial Chemistry and High Throughput Screening, Combinatorial Chemistry and High Throughput Screening, Bentham Science Publishers, 2009, 12 (4), pp.409-23
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; Support vector machines and kernel methods have recently gained considerable attention in chemoinformatics. They offer generally good performance for problems of supervised classification or regression, and provide a flexible and computationally efficient framework to include relevant information and prior knowledge about the data and problems to be handled. In particular, with kernel methods molecules do not need to be represented and stored explicitly as vectors or fingerprints, but only to be compared to each other through a comparison function technically called a kernel. While classical kernels can be used to compare vector or fingerprint representations of molecules, completely new kernels were developed in the recent years to directly compare the 2D or 3D structures of molecules, without the need for an explicit vectorization step through the extraction of molecular descriptors. While still in their infancy, these approaches have already demonstrated their relevance on several toxicity prediction and structure-activity relationship problems.

Details

Language :
English
ISSN :
13862073
Database :
OpenAIRE
Journal :
Combinatorial Chemistry and High Throughput Screening, Combinatorial Chemistry and High Throughput Screening, Bentham Science Publishers, 2009, 12 (4), pp.409-23
Accession number :
edsair.doi.dedup.....adc8796425b8a4ebce25745240739d56