Back to Search
Start Over
Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes
- Source :
- Clinical Science. 130:711-720
- Publication Year :
- 2016
- Publisher :
- Portland Press Ltd., 2016.
-
Abstract
- Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H2O2) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD.
- Subjects :
- Male
0301 basic medicine
medicine.medical_specialty
Time Factors
Bioenergetics
Mitochondrion
Kidney
DNA, Mitochondrial
Mitochondrial Dynamics
Mitochondrial Membrane Transport Proteins
Diabetes Mellitus, Experimental
Nephropathy
Rats, Sprague-Dawley
Diabetic nephropathy
03 medical and health sciences
Mitochondrial membrane transport protein
Internal medicine
medicine
Albuminuria
Animals
biology
Mitochondrial Permeability Transition Pore
General Medicine
medicine.disease
Adaptation, Physiological
Mitochondria
Up-Regulation
Oxidative Stress
Kidney Tubules
Phenotype
030104 developmental biology
Endocrinology
medicine.anatomical_structure
Mitochondrial permeability transition pore
biology.protein
Energy Metabolism
Kidney disease
Subjects
Details
- ISSN :
- 14708736 and 01435221
- Volume :
- 130
- Database :
- OpenAIRE
- Journal :
- Clinical Science
- Accession number :
- edsair.doi.dedup.....adb713c0ef237d1d7d5eb9034bb587cf