Back to Search Start Over

Topological recursion for Masur-Veech volumes

Authors :
Jørgen Ellegaard Andersen
Gaëtan Borot
Séverin Charbonnier
Vincent Delecroix
Alessandro Giacchetto
Danilo Lewański
Campbell Wheeler
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
HEP, INSPIRE
Center for Quantum Mathematics
Max Planck Institute for Mathematics (MPIM)
Max-Planck-Gesellschaft
Humboldt University Of Berlin
Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Genève = University of Geneva (UNIGE)
Source :
University of Southern Denmark, Journal of the London Mathematical Society, Journal of the London Mathematical Society, 2022, ⟨10.1112/jlms.12686⟩, Andersen, J E, Borot, G, Charbonnier, S, Delecroix, V, Giacchetto, A, Lewanski, D & Wheeler, C 2019 ' Topological recursion for Masur-Veech volumes ' arXiv.org .
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We study the Masur-Veech volumes $MV_{g,n}$ of the principal stratum of the moduli space of quadratic differentials of unit area on curves of genus $g$ with $n$ punctures. We show that the volumes $MV_{g,n}$ are the constant terms of a family of polynomials in $n$ variables governed by the topological recursion/Virasoro constraints. This is equivalent to a formula giving these polynomials as a sum over stable graphs, and retrieves a result of \cite{Delecroix} proved by combinatorial arguments. Our method is different: it relies on the geometric recursion and its application to statistics of hyperbolic lengths of multicurves developed in \cite{GRpaper}. We also obtain an expression of the area Siegel--Veech constants in terms of hyperbolic geometry. The topological recursion allows numerical computations of Masur--Veech volumes, and thus of area Siegel--Veech constants, for low $g$ and $n$, which leads us to propose conjectural formulas for low $g$ but all $n$. We also relate our polynomials to the asymptotic counting of square-tiled surfaces with large boundaries.<br />Comment: 75 pages, v2: added a section on enumeration of square-tiled surfaces

Details

Language :
English
ISSN :
00246107 and 14697750
Database :
OpenAIRE
Journal :
University of Southern Denmark, Journal of the London Mathematical Society, Journal of the London Mathematical Society, 2022, ⟨10.1112/jlms.12686⟩, Andersen, J E, Borot, G, Charbonnier, S, Delecroix, V, Giacchetto, A, Lewanski, D & Wheeler, C 2019 ' Topological recursion for Masur-Veech volumes ' arXiv.org .
Accession number :
edsair.doi.dedup.....ad9afb3669f38de217b9e6f09e9f1ded