Back to Search Start Over

Perturbation of an eigenvalue from a dense point spectrum: an example

Authors :
Michel Vittot
P. Duclos
Pavel Stovicek
Source :
Journal of Physics A: Mathematical and General. 30:7167-7185
Publication Year :
1997
Publisher :
IOP Publishing, 1997.

Abstract

We study a perturbed Floquet Hamiltonian $K+\beta V$ depending on a coupling constant $\beta$. The spectrum $\sigma(K)$ is assumed to be pure point and dense. We pick up an eigen-value, namely $0\in\sigma(K)$, and show the existence of a function $\lambda(\beta)$ defined on $I\subset\R$ such that $\lambda(\beta) \in \sigma(K+\beta V)$ for all $\beta\in I$, 0 is a point of density for the set $I$, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function $\lambda(\beta)$. All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.<br />Comment: Latex, 24 pages, 51 K

Details

ISSN :
13616447 and 03054470
Volume :
30
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and General
Accession number :
edsair.doi.dedup.....ad9799a2c24cefb2268b5ed8616b6c96
Full Text :
https://doi.org/10.1088/0305-4470/30/20/018