Back to Search
Start Over
Perturbation of an eigenvalue from a dense point spectrum: an example
- Source :
- Journal of Physics A: Mathematical and General. 30:7167-7185
- Publication Year :
- 1997
- Publisher :
- IOP Publishing, 1997.
-
Abstract
- We study a perturbed Floquet Hamiltonian $K+\beta V$ depending on a coupling constant $\beta$. The spectrum $\sigma(K)$ is assumed to be pure point and dense. We pick up an eigen-value, namely $0\in\sigma(K)$, and show the existence of a function $\lambda(\beta)$ defined on $I\subset\R$ such that $\lambda(\beta) \in \sigma(K+\beta V)$ for all $\beta\in I$, 0 is a point of density for the set $I$, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function $\lambda(\beta)$. All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.<br />Comment: Latex, 24 pages, 51 K
- Subjects :
- Physics
Coupling constant
Floquet theory
Quantum Physics
FOS: Physical sciences
General Physics and Astronomy
Perturbation (astronomy)
Sigma
Statistical and Nonlinear Physics
Lambda
symbols.namesake
symbols
Quantum Physics (quant-ph)
Hamiltonian (quantum mechanics)
Asymptotic expansion
Mathematical Physics
Eigenvalues and eigenvectors
Mathematical physics
Subjects
Details
- ISSN :
- 13616447 and 03054470
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- Journal of Physics A: Mathematical and General
- Accession number :
- edsair.doi.dedup.....ad9799a2c24cefb2268b5ed8616b6c96
- Full Text :
- https://doi.org/10.1088/0305-4470/30/20/018