Back to Search Start Over

Utterance partitioning for speaker recognition: an experimental review and analysis with new findings under GMM-SVM framework

Authors :
Hemant A. Patil
Nirmalya Sen
Krothapalli Sreenivasa Rao
T. K. Basu
Shyamal Kumar Das Mandal
Md. Sahidullah
R. H. Sapat College of Engineering Management Studies & Research
Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT)
Indian Institute of Technology Kharagpur (IIT Kharagpur)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal of Speech Technology, International Journal of Speech Technology, Springer Verlag, In press, ⟨10.1007/s10772-021-09862-8⟩, International Journal of Speech Technology, 2021, 24, pp.1067-1088. ⟨10.1007/s10772-021-09862-8⟩
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The performance of speaker recognition system is highly dependent on the amount of speech used in enrollment and test. This work presents a detailed experimental review and analysis of the GMM-SVM based speaker recognition system in presence of duration variability. This article also reports a comparison of the performance of GMM-SVM classifier with its precursor technique Gaussian mixture model-universal background model (GMM-UBM) classifier in presence of duration variability. The goal of this research work is not to propose a new algorithm for improving speaker recognition performance in presence of duration variability. However, the main focus of this work is on utterance partitioning (UP), a commonly used strategy to compensate the duration variability issue. We have analysed in detailed the impact of training utterance partitioning in speaker recognition performance under GMM-SVM framework. We further investigate the reason why the utterance partitioning is important for boosting speaker recognition performance. We have also shown in which case the utterance partitioning could be useful and where not. Our study has revealed that utterance partitioning does not reduce the data imbalance problem of the GMM-SVM classifier as claimed in earlier study. Apart from these, we also discuss issues related to the impact of parameters such as number of Gaussians, supervector length, amount of splitting required for obtaining better performance in short and long duration test conditions from speech duration perspective. We have performed the experiments with telephone speech from POLYCOST corpus consisting of 130 speakers.<br />International Journal of Speech Technology, Springer Verlag, In press

Details

ISSN :
15728110 and 13812416
Volume :
24
Database :
OpenAIRE
Journal :
International Journal of Speech Technology
Accession number :
edsair.doi.dedup.....ad86e031774047c7f8943a3f703638ad
Full Text :
https://doi.org/10.1007/s10772-021-09862-8