Back to Search Start Over

Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt

Authors :
Didier Lacombe
Claire Duflos
David Geneviève
Jeanne Amiel
Elodie Sanchez
Yline Capri
Damien Sanlaville
Marlène Rio
Alexandra Afenjar
Fabienne Giuliano
Elise Brischoux-Boucher
Mathilde Nizon
Stanislas Lyonnet
Sébastien Moutton
Vincent Gatinois
Stéphanie Arpin
Annick Toutain
Mouna Barat-Houari
Guilaine Boursier
Flavien Rouxel
Sophie Julia
Klaus Dieterich
Aurélia Jacquette
Boris Keren
Kevin Yauy
Patricia Blanchet
Marie-Line Jacquemont
Damien Haye
Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)
Cellules Souches, Plasticité Cellulaire, Médecine Régénératrice et Immunothérapies (IRMB)
Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Service de génétique médicale
Université de Bordeaux (UB)-CHU Bordeaux [Bordeaux]-Groupe hospitalier Pellegrin
Laboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) (U1211 INSERM/MRGM)
Université de Bordeaux (UB)-Groupe hospitalier Pellegrin-Institut National de la Santé et de la Recherche Médicale (INSERM)
Service de génétique [Tours]
Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Hôpital Bretonneau
Imagerie et cerveau (iBrain - Inserm U1253 - UNIV Tours )
Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre Hospitalier Universitaire Vaudois [Lausanne] (CHUV)
Université de Lausanne (UNIL)
AP-HP Hôpital universitaire Robert-Debré [Paris]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
CHU Pitié-Salpêtrière [AP-HP]
Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPC)
CHU Necker - Enfants Malades [AP-HP]
[GIN] Grenoble Institut des Neurosciences (GIN)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes (UGA)
CHU Grenoble
Centre de génétique humaine [CHRU Besançon]
Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)
Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)
CHU Toulouse [Toulouse]
Centre hospitalier universitaire de Nantes (CHU Nantes)
GRC ConCer-LD
CHU Trousseau [APHP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Maison de Santé Protestante Bagatelle
Centre Hospitalier Universitaire de La Réunion (CHU La Réunion)
Physiologie & médecine expérimentale du Cœur et des Muscles [U 1046] (PhyMedExp)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Hôpital Femme Mère Enfant [CHU - HCL] (HFME)
Hospices Civils de Lyon (HCL)
Source :
European Journal of Human Genetics, European Journal of Human Genetics, Nature Publishing Group, 2021, ⟨10.1038/s41431-021-00994-8⟩, Eur J Hum Genet
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Kabuki syndrome (KS) is a rare genetic disorder caused by mutations in two major genes, KMT2D and KDM6A, that are responsible for Kabuki syndrome 1 (KS1, OMIM147920) and Kabuki syndrome 2 (KS2, OMIM300867), respectively. We lack a description of clinical signs to distinguish KS1 and KS2. We used facial morphology analysis to detect any facial morphological differences between the two KS types. We used a facial-recognition algorithm to explore any facial morphologic differences between the two types of KS. We compared several image series of KS1 and KS2 individuals, then compared images of those of Caucasian origin only (12 individuals for each gene) because this was the main ethnicity in this series. We also collected 32 images from the literature to amass a large series. We externally validated results obtained by the algorithm with evaluations by trained clinical geneticists using the same set of pictures. Use of the algorithm revealed a statistically significant difference between each group for our series of images, demonstrating a different facial morphotype between KS1 and KS2 individuals (mean area under the receiver operating characteristic curve = 0.85 [p = 0.027] between KS1 and KS2). The algorithm was better at discriminating between the two types of KS with images from our series than those from the literature (p = 0.0007). Clinical geneticists trained to distinguished KS1 and KS2 significantly recognised a unique facial morphotype, which validated algorithm findings (p = 1.6e-11). Our deep-neural-network-driven facial-recognition algorithm can reveal specific composite gestalt images for KS1 and KS2 individuals.

Details

Language :
English
ISSN :
10184813 and 14765438
Database :
OpenAIRE
Journal :
European Journal of Human Genetics, European Journal of Human Genetics, Nature Publishing Group, 2021, ⟨10.1038/s41431-021-00994-8⟩, Eur J Hum Genet
Accession number :
edsair.doi.dedup.....ad7ad6dfb4812789189b87c66ba4c103
Full Text :
https://doi.org/10.1038/s41431-021-00994-8⟩