Back to Search
Start Over
Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2 etiologic agent of global pandemic COVID-19: an in silico approach
- Source :
- PeerJ, Vol 8, p e9572 (2020)
- Publication Year :
- 2020
- Publisher :
- PeerJ, 2020.
-
Abstract
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19), a public health emergency of international concerns declared by the World Health Organization (WHO). An immuno-informatics approach along with comparative genomics was applied to design a multi-epitope-based peptide vaccine against SARS-CoV-2 combining the antigenic epitopes of the S, M, and E proteins. The tertiary structure was predicted, refined and validated using advanced bioinformatics tools. The candidate vaccine showed an average of ≥90.0% world population coverage for different ethnic groups. Molecular docking and dynamics simulation of the chimeric vaccine with the immune receptors (TLR3 and TLR4) predicted efficient binding. Immune simulation predicted significant primary immune response with increased IgM and secondary immune response with high levels of both IgG1 and IgG2. It also increased the proliferation of T-helper cells and cytotoxic T-cells along with the increased IFN-γ and IL-2 cytokines. The codon optimization and mRNA secondary structure prediction revealed that the chimera is suitable for high-level expression and cloning. Overall, the constructed recombinant chimeric vaccine candidate demonstrated significant potential and can be considered for clinical validation to fight against this global threat, COVID-19.
- Subjects :
- B-cell Epitope
In silico
lcsh:Medicine
Biology
General Biochemistry, Genetics and Molecular Biology
Epitope
law.invention
03 medical and health sciences
0302 clinical medicine
Immune system
Antigen
law
030304 developmental biology
Comparative genomics
Muti-epitope
0303 health sciences
SARS-CoV-2
General Neuroscience
lcsh:R
T-cell Epitope
General Medicine
Virology
Chimeric Peptide Vaccine
030220 oncology & carcinogenesis
TLR3
Peptide vaccine
Recombinant DNA
General Agricultural and Biological Sciences
Subjects
Details
- ISSN :
- 21678359
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- PeerJ
- Accession number :
- edsair.doi.dedup.....ad7325972be426030e682e8ea36da10e