Back to Search Start Over

Overview paper: New insights into aerosol and climate in the Arctic

Authors :
J. P. D. Abbatt
W. R. Leaitch
A. A. Aliabadi
A. K. Bertram
J.-P. Blanchet
A. Boivin-Rioux
H. Bozem
J. Burkart
R. Y. W. Chang
J. Charette
J. P. Chaubey
R. J. Christensen
A. Cirisan
D. B. Collins
B. Croft
J. Dionne
G. J. Evans
C. G. Fletcher
M. Galí
R. Ghahremaninezhad
E. Girard
W. Gong
M. Gosselin
M. Gourdal
S. J. Hanna
H. Hayashida
A. B. Herber
S. Hesaraki
P. Hoor
L. Huang
R. Hussherr
V. E. Irish
S. A. Keita
J. K. Kodros
F. Köllner
F. Kolonjari
D. Kunkel
L. A. Ladino
K. Law
M. Levasseur
Q. Libois
J. Liggio
M. Lizotte
K. M. Macdonald
R. Mahmood
R. V. Martin
R. H. Mason
L. A. Miller
A. Moravek
E. Mortenson
E. L. Mungall
J. G. Murphy
M. Namazi
A.-L. Norman
N. T. O'Neill
J. R. Pierce
L. M. Russell
J. Schneider
H. Schulz
S. Sharma
M. Si
R. M. Staebler
N. S. Steiner
J. L. Thomas
K. von Salzen
J. J. B. Wentzell
M. D. Willis
G. R. Wentworth
J.-W. Xu
J. D. Yakobi-Hancock
Department of Chemistry [University of Toronto]
University of Toronto
Environment and Climate Change Canada
School of Engineering [Guelph]
University of Guelph
Department of Chemistry [Vancouver] (UBC Chemistry)
University of British Columbia (UBC)
Département des sciences de la terre et de l'atmosphère [Montréal] (SCTA)
Université du Québec à Montréal = University of Québec in Montréal (UQAM)
Institut des Sciences de la MER de Rimouski (ISMER)
Université du Québec à Rimouski (UQAR)
Institute for Atmospheric Physics [Mainz] (IPA)
Johannes Gutenberg - Universität Mainz (JGU)
Aerosol Physics and Environmental Physics [Vienna]
University of Vienna [Vienna]
Department of Physics and Atmospheric Science [Halifax]
Dalhousie University [Halifax]
Department of Chemistry [Lewisburg]
Bucknell University
Department of Chemical Engineering and Applied Chemistry (CHEM ENG)
Department of Geography and Environmental Management [Waterloo]
University of Waterloo [Waterloo]
Department of Biology [Québec]
Université Laval [Québec] (ULaval)
Departement de Biologie [Québec]
School of Earth and Ocean Sciences [Victoria] (SEOS)
University of Victoria [Canada] (UVIC)
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)
Centre d'Applications et de Recherches en TELédétection [Sherbrooke] (CARTEL)
Département de géomatique appliquée [Sherbrooke] (UdeS)
Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)
Department of Atmospheric Science [Fort Collins]
Colorado State University [Fort Collins] (CSU)
Particle Chemistry Department [Mainz]
Max Planck Institute for Chemistry (MPIC)
Max-Planck-Gesellschaft-Max-Planck-Gesellschaft
Centro de Ciencias de la Atmosfera [Mexico]
Universidad Nacional Autónoma de México (UNAM)
TROPO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Air Quality Processes Research Section
Canadian Centre for Climate Modelling and Analysis (CCCma)
Institute of Ocean Sciences [Sidney] (IOS)
Fisheries and Oceans Canada (DFO)
Department of Mathematics [Isfahan]
University of Isfahan
Department of Physics and Astronomy [Calgary]
University of Calgary
Scripps Institution of Oceanography (SIO)
University of California [San Diego] (UC San Diego)
University of California-University of California
Institut des Géosciences de l’Environnement (IGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
Alberta Environment and Parks (AEP)
National Research Council of Canada (NRC)
Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University (JGU)
Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Scripps Institution of Oceanography (SIO - UC San Diego)
University of California (UC)-University of California (UC)
Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Source :
Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2019, 19 (4), pp.2527-2560. ⟨10.5194/acp-19-2527-2019⟩, Atmospheric Chemistry and Physics, vol 19, iss 4, Atmospheric Chemistry and Physics, Vol 19, Pp 2527-2560 (2019), Atmospheric Chemistry and Physics, 2019, 19 (4), pp.2527-2560. ⟨10.5194/acp-19-2527-2019⟩
Publication Year :
2019
Publisher :
Copernicus GmbH, 2019.

Abstract

Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summertime dimethyl sulfide (DMS) levels were identified in ocean water (up to 75 nM) and the overlying atmosphere (up to 1 ppbv) in the Canadian Arctic Archipelago (CAA). Furthermore, melt ponds, which are widely prevalent, were identified as an important DMS source (with DMS concentrations of up to 6 nM and a potential contribution to atmospheric DMS of 20 % in the study area). (2) Evidence of widespread particle nucleation and growth in the marine boundary layer was found in the CAA in the summertime, with these events observed on 41 % of days in a 2016 cruise. As well, at Alert, Nunavut, particles that are newly formed and grown under conditions of minimal anthropogenic influence during the months of July and August are estimated to contribute 20 % to 80 % of the 30–50 nm particle number density. DMS-oxidation-driven nucleation is facilitated by the presence of atmospheric ammonia arising from seabird-colony emissions, and potentially also from coastal regions, tundra, and biomass burning. Via accumulation of secondary organic aerosol (SOA), a significant fraction of the new particles grow to sizes that are active in cloud droplet formation. Although the gaseous precursors to Arctic marine SOA remain poorly defined, the measured levels of common continental SOA precursors (isoprene and monoterpenes) were low, whereas elevated mixing ratios of oxygenated volatile organic compounds (OVOCs) were inferred to arise via processes involving the sea surface microlayer. (3) The variability in the vertical distribution of black carbon (BC) under both springtime Arctic haze and more pristine summertime aerosol conditions was observed. Measured particle size distributions and mixing states were used to constrain, for the first time, calculations of aerosol–climate interactions under Arctic conditions. Aircraft- and ground-based measurements were used to better establish the BC source regions that supply the Arctic via long-range transport mechanisms, with evidence for a dominant springtime contribution from eastern and southern Asia to the middle troposphere, and a major contribution from northern Asia to the surface. (4) Measurements of ice nucleating particles (INPs) in the Arctic indicate that a major source of these particles is mineral dust, likely derived from local sources in the summer and long-range transport in the spring. In addition, INPs are abundant in the sea surface microlayer in the Arctic, and possibly play a role in ice nucleation in the atmosphere when mineral dust concentrations are low. (5) Amongst multiple aerosol components, BC was observed to have the smallest effective deposition velocities to high Arctic snow (0.03 cm s−1).

Details

ISSN :
16807324 and 16807316
Volume :
19
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics
Accession number :
edsair.doi.dedup.....ad5c134344b846d7c822cd238a94479f