Back to Search Start Over

Statistical binary patterns for rotational invariant texture classification

Authors :
Thanh Phuong Nguyen
Ngoc-Son Vu
Antoine Manzanera
Unité d'Informatique et d'Ingénierie des Systèmes (U2IS)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Laboratoire des Sciences de l'Information et des Systèmes (LSIS)
Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)
Signal et Image (SIIM)
Laboratoire d'Informatique et Systèmes (LIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Equipes Traitement de l'Information et Systèmes (ETIS - UMR 8051)
CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Source :
Neurocomputing, Neurocomputing, Elsevier, 2016, ⟨10.1016/j.neucom.2015.09.029⟩, Neurocomputing, 2016, ⟨10.1016/j.neucom.2015.09.029⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

A new texture representation framework called statistical binary patterns (SBPs) is presented. It consists in applying rotation invariant local binary pattern operators ( LBP riu 2 ) to a series of moment images, defined by local statistics uniformly computed using a given spatial support. It can be seen as a generalisation of the commonly used complementation approach (CLBP), since it extends the local description not only to local contrast information, but also to higher order local variations. In short, SBPs aim at expanding LBP self-similarity operator from the local grey level to the regional distribution level. Thanks to a richer local description, the SBPs have better discrimination power than other LBP variants. Furthermore, thanks to the regularisation effect of the statistical moments, the SBP descriptors show better noise robustness than classical CLBPs. The interest of the approach is validated through a large experimental study performed on five texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD. The results show that, for the four first datasets, the SBPs are comparable or outperform the recent state-of-the-art methods, even using small support for the LBP operator, and using limited size spatial support for the computation of the local statistics. HighlightsWe extend the binary patterns from the pixel level to the local distribution level.We exploit moment images calculated from spatial support of the statistics.Statistical moments clearly improve the expressiveness and robustness of descriptor.

Details

Language :
English
ISSN :
09252312
Database :
OpenAIRE
Journal :
Neurocomputing, Neurocomputing, Elsevier, 2016, ⟨10.1016/j.neucom.2015.09.029⟩, Neurocomputing, 2016, ⟨10.1016/j.neucom.2015.09.029⟩
Accession number :
edsair.doi.dedup.....ad2c7854ed1617a23a9fc101dc9be2e7
Full Text :
https://doi.org/10.1016/j.neucom.2015.09.029⟩