Back to Search Start Over

Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions

Authors :
Robert E. Zillich
Jordi Boronat
A. Macia
Ferran Mazzanti
Universitat Politècnica de Catalunya. Departament de Física i Enginyeria Nuclear
Universitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity
Universitat Politècnica de Catalunya. SIMCON - Grup de Recerca de Simulació per Ordinador en Matèria Condensada
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2011
Publisher :
American Physical Society (APS), 2011.

Abstract

A microscopic description of the zero energy two-body ground state and many-body static properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions at low densities is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole--dipole interaction, on the energy per particle, comparing the results with mean field predictions. We restrict the analysis to the regime where the interaction is always repulsive, although the strength of the repulsion depends on the orientation with respect to the polarization field. We present a series expansion of the solution of the zero energy two-body problem which allows us to find the scattering length of the interaction and to build a suitable Jastrow factor that we use as a trial wave function for both a variational and diffusion Monte Carlo simulation of the infinite system. We find that the anisotropy has an almost negligible impact on the ground state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions.<br />9 figures, 1 table

Details

ISSN :
10941622 and 10502947
Volume :
84
Database :
OpenAIRE
Journal :
Physical Review A
Accession number :
edsair.doi.dedup.....ad1a1d102ff26f32a0d97aec3c12c38d
Full Text :
https://doi.org/10.1103/physreva.84.033625