Back to Search Start Over

Hellinger and total variation distance in approximating Lévy driven SDEs

Authors :
Emmanuelle Clément
Laboratoire Analyse et Mathématiques Appliquées (LAMA)
Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

In this paper, we get some convergence rates in total variation distance in approximating discretized paths of L{\'e}vy driven stochastic differential equations, assuming that the driving process is locally stable. The particular case of the Euler approximation is studied. Our results are based on sharp local estimates in Hellinger distance obtained using Malliavin calculus for jump processes.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ad01539596c79a7e52d9079d12ac5b47