Back to Search Start Over

Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae

Authors :
Dong-Yun Choi
Hee-Sik Kim
Yong Jae Lee
Dae-Hyun Cho
Ji Won Kim
Quynh-Giao Tran
Su-Bin Park
Source :
Microbial Cell Factories, Microbial Cell Factories, Vol 19, Iss 1, Pp 1-9 (2020)
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Background For decades, plastic has been a valuable global product due to its convenience and low price. For example, polyethylene terephthalate (PET) was one of the most popular materials for disposable bottles due to its beneficial properties, namely impact resistance, high clarity, and light weight. Increasing demand of plastic resulted in indiscriminate disposal by consumers, causing severe accumulation of plastic wastes. Because of this, scientists have made great efforts to find a way to biologically treat plastic wastes. As a result, a novel plastic degradation enzyme, PETase, which can hydrolyze PET, was discovered in Ideonella sakaiensis 201-F6 in 2016. Results A green algae, Chlamydomonas reinhardtii, which produces PETase, was developed for this study. Two representative strains (C. reinhardtii CC-124 and CC-503) were examined, and we found that CC-124 could express PETase well. To verify the catalytic activity of PETase produced by C. reinhardtii, cell lysate of the transformant and PET samples were co-incubated at 30 °C for up to 4 weeks. After incubation, terephthalic acid (TPA), i.e. the fully-degraded form of PET, was detected by high performance liquid chromatography analysis. Additionally, morphological changes, such as holes and dents on the surface of PET film, were observed using scanning electron microscopy. Conclusions A PET hydrolyzing enzyme, PETase, was successfully expressed in C. reinhardtii, and its catalytic activity was demonstrated. To the best of our knowledge, this is the first case of PETase expression in green algae.

Details

ISSN :
14752859
Volume :
19
Database :
OpenAIRE
Journal :
Microbial Cell Factories
Accession number :
edsair.doi.dedup.....acd0f16efd6b9339eb8c265561cb88d8
Full Text :
https://doi.org/10.1186/s12934-020-01355-8